scholarly journals Note on an Ordering Theorem for Subfields

1952 ◽  
Vol 4 ◽  
pp. 125-129
Author(s):  
Tadasi Nakayama

In a recent paper [3] Tannaka gave an interesting ordering theorem for subfields of a p-adic number field, The purpose of the present note is firstly to observe, on modifying Tannaka’s argument a little, that his restriction to those subfields over which the original field is abelian may be removed and in fact the theorem holds for arbitrary fields which are not p-adic number fields, indeed in a much refined form, and secondly to formulate a similar ordering theorem for algebraic number fields in terms of idèle-class groups in place of element groups.

1955 ◽  
Vol 9 ◽  
pp. 115-118 ◽  
Author(s):  
Tomio Kubota

We shall prove in the present note a theorem on units of algebraic number fields, applying one of the strongest formulations, be Hasse [3], of Grunwald’s existence theorem.


2012 ◽  
Vol 11 (05) ◽  
pp. 1250087 ◽  
Author(s):  
ANDREAS PHILIPP

Let R be an order in an algebraic number field. If R is a principal order, then many explicit results on its arithmetic are available. Among others, R is half-factorial if and only if the class group of R has at most two elements. Much less is known for non-principal orders. Using a new semigroup theoretical approach, we study half-factoriality and further arithmetical properties for non-principal orders in algebraic number fields.


1987 ◽  
Vol 107 ◽  
pp. 135-146 ◽  
Author(s):  
Yoshitaka Odai

Let I be an odd prime number and let K be an algebraic number field of degree I. Let M denote the genus field of K, i.e., the maximal extension of K which is a composite of an absolute abelian number field with K and is unramified at all the finite primes of K. In [4] Ishida has explicitly constructed M. Therefore it is of some interest to investigate unramified cyclic extensions of K of degree l, which are not contained in M. In the preceding paper [6] we have obtained some results about this problem in the case that K is a pure cubic field. The purpose of this paper is to extend those results.


Author(s):  
David E. Rush

Let R be the ring of integers of a number field K with class group G. It is classical that R is a unique factorization domain if and only if G is the trivial group; and the finite abelian group G is generally considered as a measure of the failure of unique factorization in R. The first arithmetic description of rings of integers with non-trivial class groups was given in 1960 by L. Carlitz (1). He proved that G is a group of order ≤ two if and only if any two factorizations of an element of R into irreducible elements have the same number of factors. In ((6), p. 469, problem 32) W. Narkiewicz asked for an arithmetic characterization of algebraic number fields K with class numbers ≠ 1, 2. This problem was solved for certain class groups with orders ≤ 9 in (2), and for the case that G is cyclic or a product of k copies of a group of prime order in (5). In this note we solve Narkiewicz's problem in general by giving arithmetical characterizations of a ring of integers whose class group G is any given finite abelian group.


2019 ◽  
Vol 15 (02) ◽  
pp. 353-360
Author(s):  
Sudesh K. Khanduja

For an algebraic number field [Formula: see text], let [Formula: see text] denote the discriminant of an algebraic number field [Formula: see text]. It is well known that if [Formula: see text] are algebraic number fields with coprime discriminants, then [Formula: see text] are linearly disjoint over the field [Formula: see text] of rational numbers and [Formula: see text], [Formula: see text] being the degree of [Formula: see text] over [Formula: see text]. In this paper, we prove that the converse of this result holds in relative extensions of algebraic number fields. We also give some more necessary and sufficient conditions for the analogue of the above equality to hold for algebraic number fields [Formula: see text] linearly disjoint over [Formula: see text].


1984 ◽  
Vol 93 ◽  
pp. 133-148 ◽  
Author(s):  
Katsuya Miyake

Let k be an algebraic number field of finite degree, and K a finite Galois extension of k. A central extension L of K/k is an algebraic number field which contains K and is normal over k, and whose Galois group over K is contained in the center of the Galois group Gal(L/k). We denote the maximal abelian extensions of k and K in the algebraic closure of k by kab and Kab respectively, and the maximal central extension of K/k by MCK/k. Then we have Kab⊃MCK/k⊃kab·K.


Sign in / Sign up

Export Citation Format

Share Document