scholarly journals Conditions for well-posedness in Gevrey classes of the Cauchy problems for Fuchsian hyperbolic operators

1985 ◽  
Vol 21 (2) ◽  
pp. 355-383 ◽  
Author(s):  
Hitoshi Uryu
2006 ◽  
Vol 133 (31) ◽  
pp. 176-186
Author(s):  
Daniela Calvo ◽  
L. Rodino

After a short survey on Gevrey functions and ultradistributions, we present the inhomogeneous Gevrey ultradistributions introduced recently by the authors in collaboration with A. Morando, cf. [7]. Their definition depends on a given weight function ?, satisfying suitable hypotheses, according to Liess-Rodino [16]. As an application, we define (s, ?)-hyperbolic partial differential operators with constant coefficients (for s > 1), and prove for them the well-posedness of the Cauchy problem in the frame of the corresponding inhomogeneous ultradistributions. This sets in the dual spaces a similar result of Calvo [4] in the inhomogeneous Gevrey classes, that in turn extends a previous result of Larsson [14] for weakly hyperbolic operators in standard homogeneous Gevrey classes. AMS Mathematics Subject Classification (2000): 46F05, 35E15, 35S05.


2020 ◽  
Vol 192 (1) ◽  
pp. 1-38
Author(s):  
Ahmed Abdeljawad ◽  
Alessia Ascanelli ◽  
Sandro Coriasco

2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Jorge Morales Paredes ◽  
Félix Humberto Soriano Méndez

<p style='text-indent:20px;'>In this paper we examine the well-posedness and ill-posedeness of the Cauchy problems associated with a family of equations of ZK-KP-type</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \begin{cases} u_{t} = u_{xxx}-\mathscr{H}D_{x}^{\alpha}u_{yy}+uu_{x}, \cr u(0) = \psi \in Z \end{cases} $\end{document} </tex-math> </disp-formula></p><p style='text-indent:20px;'>in anisotropic Sobolev spaces, where <inline-formula><tex-math id="M1">\begin{document}$ 1\le \alpha \le 1 $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M2">\begin{document}$ \mathscr{H} $\end{document}</tex-math></inline-formula> is the Hilbert transform and <inline-formula><tex-math id="M3">\begin{document}$ D_{x}^{\alpha} $\end{document}</tex-math></inline-formula> is the fractional derivative, both with respect to <inline-formula><tex-math id="M4">\begin{document}$ x $\end{document}</tex-math></inline-formula>.</p>


2008 ◽  
Vol 102 (2) ◽  
pp. 283 ◽  
Author(s):  
Massimo Cicognani ◽  
Fumihiko Hirosawa

We consider the loss of regularity of the solution to the backward Cauchy problem for a second order strictly hyperbolic equation on the time interval $[0,T]$ with time depending coefficients which have a singularity only at the end point $t=0$. The main purpose of this paper is to show that the loss of regularity of the solution on the Gevrey scale can be described by the order of differentiability of the coefficients on $(0,T]$, the order of singularities of each derivatives as $t\to0$ and a stabilization condition of the amplitude of oscillations described by an integral on $(0,T)$. Moreover, we prove the optimality of the conditions for $C^\infty$ coefficients on $(0,T]$ by constructing a counterexample.


Sign in / Sign up

Export Citation Format

Share Document