Deterministic and stochastic Cauchy problems for a class of weakly hyperbolic operators on $$\mathbb {R}^n$$Rn

2020 ◽  
Vol 192 (1) ◽  
pp. 1-38
Author(s):  
Ahmed Abdeljawad ◽  
Alessia Ascanelli ◽  
Sandro Coriasco
2019 ◽  
Vol 65 (2) ◽  
pp. 157-338
Author(s):  
E L Shishkina

In this work, we develop the theory of hyperbolic equations with Bessel operators. We construct and invert hyperbolic potentials generated by multidimensional generalized translation. Chapter 1 contains necessary notation, definitions, auxiliary facts and results. In Chapter 2, we study some generalized weight functions related to a quadratic form. These functions are used below to construct fractional powers of hyperbolic operators and solutions of hyperbolic equations with Bessel operators. Chapter 3 is devoted to hyperbolic potentials generated by multidimensional generalized translation. These potentials express negative real powers of the singular wave operator, i. e. the wave operator where the Bessel operator acts instead of second derivatives. The boundedness of such an operator and its properties are investigated and the inverse operator is constructed. The hyperbolic Riesz B-potential is studied as well in this chapter. In Chapter 4, we consider various methods of solution of the Euler-Poisson-Darboux equation. We obtain solutions of the Cauchy problems for homogeneous and nonhomogeneous equations of this type. In Conclusion, we discuss general methods of solution for problems with arbitrary singular operators.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Mourad Choulli ◽  
Masahiro Yamamoto

AbstractUniqueness of parabolic Cauchy problems is nowadays a classical problem and since Hadamard [Lectures on Cauchy’s Problem in Linear Partial Differential Equations, Dover, New York, 1953], these kind of problems are known to be ill-posed and even severely ill-posed. Until now, there are only few partial results concerning the quantification of the stability of parabolic Cauchy problems. We bring in the present work an answer to this issue for smooth solutions under the minimal condition that the domain is Lipschitz.


2020 ◽  
Vol 10 (1) ◽  
pp. 353-370 ◽  
Author(s):  
Hans-Christoph Grunau ◽  
Nobuhito Miyake ◽  
Shinya Okabe

Abstract This paper is concerned with the positivity of solutions to the Cauchy problem for linear and nonlinear parabolic equations with the biharmonic operator as fourth order elliptic principal part. Generally, Cauchy problems for parabolic equations of fourth order have no positivity preserving property due to the change of sign of the fundamental solution. One has eventual local positivity for positive initial data, but on short time scales, one will in general have also regions of negativity. The first goal of this paper is to find sufficient conditions on initial data which ensure the existence of solutions to the Cauchy problem for the linear biharmonic heat equation which are positive for all times and in the whole space. The second goal is to apply these results to show existence of globally positive solutions to the Cauchy problem for a semilinear biharmonic parabolic equation.


2006 ◽  
Vol 03 (01) ◽  
pp. 81-141 ◽  
Author(s):  
PIOTR T. CHRUŚCIEL ◽  
SZYMON ŁȨSKI

The study of Einstein equations leads naturally to Cauchy problems with initial data on hypersurfaces which closely resemble hyperboloids in Minkowski space-time, and with initial data with polyhomogeneous asymptotics, that is, with asymptotic expansions in terms of powers of ln r and inverse powers of r. Such expansions also arise in the conformal method for analysing wave equations in odd space-time dimension. In recent work it has been shown that for non-linear wave equations, or for wave maps, polyhomogeneous initial data lead to solutions which are also polyhomogeneous provided that an infinite hierarchy of corner conditions holds. In this paper we show that the result is true regardless of corner conditions.


Sign in / Sign up

Export Citation Format

Share Document