Activation of the c-fosProto-Oncogene in the Spinal Cord Following Noxious Stimulation of the Urinary Bladder

1994 ◽  
Vol 11 (4) ◽  
pp. 319-325 ◽  
Author(s):  
Francisco Cruz ◽  
Antonio Avelino ◽  
Deolinda Lima ◽  
Antonio Coimbra
2005 ◽  
Vol 102 (3) ◽  
pp. 624-632 ◽  
Author(s):  
Steven L. Jinks ◽  
Carmen L. Dominguez ◽  
Joseph F. Antognini

Background Individuals with spinal cord injury may undergo multiple surgical procedures; however, it is not clear how spinal cord injury affects anesthetic requirements and movement force under anesthesia during both acute and chronic stages of the injury. Methods The authors determined the isoflurane minimum alveolar concentration (MAC) necessary to block movement in response to supramaximal noxious stimulation, as well as tail-flick and hind paw withdrawal latencies, before and up to 28 days after thoracic spinal transection. Tail-flick and hind paw withdrawal latencies were measured in the awake state to test for the presence of spinal shock or hyperreflexia. The authors measured limb forces elicited by noxious mechanical stimulation of a paw or the tail at 28 days after transection. Limb force experiments were also conducted in other animals that received a reversible spinal conduction block by cooling the spinal cord at the level of the eighth thoracic vertebra. Results A large decrease in MAC (to </= 40% of pretransection values) occurred after spinal transection, with partial recovery (to approximately 60% of control) at 14-28 days after transection. Awake tail-flick and hind paw withdrawal latencies were facilitated or unchanged, whereas reflex latencies under isoflurane were depressed or absent. However, at 80-90% of MAC, noxious stimulation of the hind paw elicited ipsilateral limb withdrawals in all animals. Hind limb forces were reduced (by >/= 90%) in both chronic and acute cold-block spinal animals. Conclusions The immobilizing potency of isoflurane increases substantially after spinal transection, despite the absence of a baseline motor depression, or "spinal shock." Therefore, isoflurane MAC is determined by a spinal depressant action, possibly counteracted by a supraspinal facilitatory action. The partial recovery in MAC at later time points suggests that neuronal plasticity after spinal cord injury influences anesthetic requirements.


1998 ◽  
pp. 2274-2279 ◽  
Author(s):  
CARL J. CHANG ◽  
SHIH-TSUNG HUANG ◽  
KENNETH HSU ◽  
AUSTIN LIN ◽  
MARSHALL L. STOLLER ◽  
...  

1974 ◽  
Vol 29 (5) ◽  
pp. 375-381 ◽  
Author(s):  
E. Eidelberg ◽  
E. Bors ◽  
C.M. Woodbury ◽  
A. Brigham

1992 ◽  
Vol 68 (5) ◽  
pp. 1575-1588 ◽  
Author(s):  
S. F. Hobbs ◽  
M. J. Chandler ◽  
D. C. Bolser ◽  
R. D. Foreman

1. Referred pain of visceral origin has three major characteristics: visceral pain is referred to somatic areas that are innervated from the same spinal segments as the diseased organ; visceral pain is referred to proximal body regions and not to distal body areas; and visceral pain is felt as deep pain and not as cutaneous pain. The neurophysiological basis for these phenomena is poorly understood. The purpose of this study was to examine the organization of viscerosomatic response characteristics of spinothalamic tract (STT) neurons in the rostral spinal cord. Interactions were determined among the following: 1) segmental location, 2) effects of input by cardiopulmonary sympathetic, greater splanchnic, lumbar sympathetic, and urinary bladder afferent fibers, 3) location of excitatory somatic field, e.g., hand, forearm, proximal arm, or chest, 4) magnitude of response to hair, skin, and deep mechanoreceptor afferent input, and 5) regional specificity of thalamic projection sites. 2. A total of 89 STT neurons in segments C3-T6 were characterized for responses to visceral and somatic stimuli. Neurons were activated antidromically from the contralateral ventroposterolateral oralis or caudalis nuclei of the thalamus. Cell responses to visceral and somatic stimuli were not different on the basis of the thalamic site of antidromic activation. Recording sites for 61 neurons were located histologically; 87% of lesion sites were located in laminae IV-VII or X. There was no relationship between response properties of the neurons and spinal laminar location. 3. Different responses to visceral stimuli were observed in three zones of the rostral spinal cord: C3-C6, C7-C8, and T1-T6. In C3-C6, urinary bladder distension (UBD) and electrical stimulation of greater splanchnic and lumbar sympathetic afferent fibers inhibited STT cells. Electrical stimulation of cardiopulmonary sympathetic afferents increased cell activity in C5 and C6 and either excited or inhibited STT cells in C3 and C4. In the cervical enlargement (C7-C8), STT cells generally were either inhibited or showed little response to stimulation of visceral afferent fibers. In T1-T6, input from greater splanchnic and cardiopulmonary sympathetic afferent nerves increased activity of STT cells. Lumbar sympathetic afferent input inhibited cells in T1-T2 and had little effect on cells in T3-T6, whereas UBD decreased cell activity in all segments studied. 4. In general, stimulation of somatic structures increased activity of STT neurons in segments that received primary afferent innervation from the excitatory somatic receptive field or in the segments immediately adjacent to these segments. Only input from the forelimb, especially the hand, markedly excited cells in C7 and C8.+


2008 ◽  
Vol 41 (3) ◽  
pp. 497-503 ◽  
Author(s):  
Krzysztof Radziszewski ◽  
Henryk Zielinski ◽  
Pawel Radziszewski ◽  
Rafal Swiecicki

1998 ◽  
Vol 160 (6 Part 1) ◽  
pp. 2274-2279 ◽  
Author(s):  
CARL J. CHANG ◽  
SHIH-TSUNG HUANG ◽  
KENNETH HSU ◽  
AUSTIN LIN ◽  
MARSHALL L. STOLLER ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document