dorsal horn
Recently Published Documents


TOTAL DOCUMENTS

3736
(FIVE YEARS 325)

H-INDEX

132
(FIVE YEARS 10)

Author(s):  
Baorui Xing ◽  
Nana Feng ◽  
Juan Zhang ◽  
Yunmei Li ◽  
Xiuxiu Hou ◽  
...  

Whether pinocembrin (PCN) could be utilized to alleviate hip fracture-induced pain is investigated in this research. Aged rats with hip fractures were treated with vehicle or 80 mg/kg/day PCN from week 3 to week 4. Then hind paw mechanical allodynia, unweighting, warmth, and thickness were measured. The microglia and astrocytes activation and proliferation markers in the spinal dorsal horn were detected with real-time PCR and immunofluorescence staining. The relative expression of substance P and its receptor, tachykinin receptor 1 (Tacr1), were detected with enzyme-linked immunosorbent assay (ELISA) and Western blots. The antinociceptive effect of Tacr1 inhibitor LY303870 was also testified. PCN alleviated hip fracture-induced hind paw nociceptive (allodynia and unweighting) and vascular changes (warmth and thickness) in aged rats with diminished microglia and astrocytes activation and proliferation in the spinal dorsal horn. Up-regulated substance P and Tacr1 were induced after hip fracture, which could be reversed by PCN treatment. Furthermore, LY303870 treatment partially reversed both spinal nociceptive sensitization and vascular changes after hip fracture. Substance P signaling contributes to the nociceptive and vascular changes observed in the hip fracture, which could be alleviated by PCN.


2021 ◽  
Vol 15 ◽  
Author(s):  
Ming-Ming Zhang ◽  
Yu-Peng Feng ◽  
Xin-Tong Qiu ◽  
Tao Chen ◽  
Yang Bai ◽  
...  

Neurotensin (NT) is an endogenous tridecapeptide in the central nervous system. NT-containing neurons and NT receptors are widely distributed in the spinal dorsal horn (SDH), indicating their possible modulatory roles in nociception processing. However, the exact distribution and function of NT, as well as NT receptors (NTRs) expression in the SDH, have not been well documented. Among the four NTR subtypes, NTR2 is predominantly involved in central analgesia according to previous reports. However, the expression and function of NTR2 in the SDH has not yet been directly elucidated. Specifically, it remains unclear how NT-NTR2 interactions contribute to NT-mediated analgesia. In the present study, by using immunofluorescent histochemical staining and immunohistochemical staining with in situ hybridization histochemical staining, we found that dense NT- immunoreactivity (NT-ir) and moderate NTR2-ir neuronal cell bodies and fibers were localized throughout the superficial laminae (laminae I-II) of the SDH at the light microscopic level. In addition, γ-aminobutyric acid (GABA) and NTR2 mRNA were colocalized in some neuronal cell bodies, predominantly in lamina II. Using confocal and electron microscopy, we also observed that NT-ir terminals made both close contacts and asymmetrical synapses with the local GABA-ir neurons. Second, electrophysiological recordings showed that NT facilitated inhibitory synaptic transmission but not glutamatergic excitatory synaptic transmission. Inactivation of NTR2 abolished the NT actions on both GABAergic and glycinergic synaptic release. Moreover, a behavioral study revealed that intrathecal injection of NT attenuated thermal pain, mechanical pain, and formalin induced acute inflammatory pain primarily by activating NTR2. Taken together, the present results provide direct evidence that NT-containing terminals and fibers, as well as NTR2-expressing neurons are widely distributed in the spinal dorsal horn, GABA-containing neurons express NTR2 mainly in lamina II, GABA coexists with NTR2 mainly in lamina II, and NT may directly increase the activity of local inhibitory neurons through NTR2 and induce analgesic effects.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Qing-Tao Meng ◽  
Xian-Yu Liu ◽  
Xue-Ting Liu ◽  
Juan Liu ◽  
Admire Munanairi ◽  
...  

Histamine-dependent and -independent itch is conveyed by parallel peripheral neural pathways that express gastrin-releasing peptide (GRP) and neuromedin B (NMB), respectively, to the spinal cord of mice. B-type natriuretic peptide (BNP) has been proposed to transmit both types of itch via its receptor NPRA encoded by Npr1. However, BNP also binds to its cognate receptor, NPRC encoded by Npr3 with equal potency. Moreover, natriuretic peptides (NP) signal through the Gi-couped inhibitory cGMP pathway that is supposed to inhibit neuronal activity, raising the question of how BNP may transmit itch information. Here we report that Npr3 expression in laminae I-II of the dorsal horn partially overlaps with NMB receptor (NMBR) that transmits histaminergic itch via Gq-couped PLCb-Ca2+ signaling pathway. Functional studies indicate that NPRC is required for itch evoked by histamine but not chloroquine (CQ), a nonhistaminergic pruritogen. Importantly, BNP significantly facilitates scratching behaviors mediated by NMB, but not GRP. Consistently, BNP evoked Ca2+ responses in NMBR/NPRC HEK 293 cells and NMBR/NPRC dorsal horn neurons. These results reveal a previously unknown mechanism by which BNP facilitates NMB-encoded itch through a novel NPRC-NMBR cross-signaling in mice. Our studies uncover distinct modes of action for neuropeptides in transmission and modulation of itch in mice.


2021 ◽  
Vol 20 (11) ◽  
pp. 2287-2292
Author(s):  
Zhenping Xiao ◽  
Mengjun Liao ◽  
Yunwu He ◽  
Yonglin Li ◽  
Wuzhou Yang ◽  
...  

Purpose: To determine the mechanism involved in pregabalin-induced alleviation of postherpetic neuralgia in a rat model.Methods: Ninety-sixty healthy Sprague-Dawley (SD) rats were assigned to sham, model andpregabalin groups (32 rats per group). A model of postherpetic neuralgia (PN) was established. The expressions of IL-1β and TNF-α in spinal cord tissue were determined 7 days after administration of treatments. The proportions of fluorescence areas in astrocytes in the dorsal horn, prefrontal lobe and hippocampus, and level of spinal cord TRPV1 channel protein in each group were evaluated.Results: Relative to model rats, IL-1β and TNF-α in spinal cord of pregabalin rats were significantly reduced (p < 0.05). The areas of fluorescence in astrocytes in dorsal horn of spinal cord, prefrontal lobe and hippocampus of model group were significantly increased, relative to sham, but were decreased in rats in pregabalin group (p < 0.05).Conclusion: Pregabalin significantly alleviates postherpetic neuralgia via mechanisms which may be related to the inflammatory response of spinal dorsal horn and downregulation of TRPV1 channel protein expression. This finding may be useful in developing new drugs for alleviating postherpetic neuralgia.


Author(s):  
Yan-Yan Wu ◽  
Hai-Long Zhang ◽  
Xiaomin Lu ◽  
Han Du ◽  
Yong-Chang Li ◽  
...  

AbstractIrritable bowel syndrome is a gastrointestinal disorder of unknown etiology characterized by widespread, chronic abdominal pain associated with altered bowel movements. Increasing amounts of evidence indicate that injury and inflammation during the neonatal period have long-term effects on tissue structure and function in the adult that may predispose to gastrointestinal diseases. In this study we aimed to investigate how the epigenetic regulation of DNA demethylation of the p2x7r locus guided by the transcription factor GATA binding protein 1 (GATA1) in spinal astrocytes affects chronic visceral pain in adult rats with neonatal colonic inflammation (NCI). The spinal GATA1 targeting to DNA demethylation of p2x7r locus in these rats was assessed by assessing GATA1 function with luciferase assay, chromatin immunoprecipitation, patch clamp, and interference in vitro and in vivo. In addition, a decoy oligodeoxynucleotide was designed and applied to determine the influence of GATA1 on the DNA methylation of a p2x7r CpG island. We showed that NCI caused the induction of GATA1, Ten-eleven translocation 3 (TET3), and purinergic receptors (P2X7Rs) in astrocytes of the spinal dorsal horn, and demonstrated that inhibiting these molecules markedly increased the pain threshold, inhibited the activation of astrocytes, and decreased the spinal sEPSC frequency. NCI also markedly demethylated the p2x7r locus in a manner dependent on the enhancement of both a GATA1–TET3 physical interaction and GATA1 binding at the p2x7r promoter. Importantly, we showed that demethylation of the p2x7r locus (and the attendant increase in P2X7R expression) was reversed upon knockdown of GATA1 or TET3 expression, and demonstrated that a decoy oligodeoxynucleotide that selectively blocked the GATA1 binding site increased the methylation of a CpG island in the p2x7r promoter. These results demonstrate that chronic visceral pain is mediated synergistically by GATA1 and TET3 via a DNA-demethylation mechanism that controls p2x7r transcription in spinal dorsal horn astrocytes, and provide a potential therapeutic strategy by targeting GATA1 and p2x7r locus binding.


Author(s):  
Yo Otsu ◽  
Karin Aubrey

Background and Purpose: Descending projections from neurons in the rostral ventromedial medulla (RVM) make synapses within the superficial dorsal horn of the spinal cord that are involved in acute nociception and the development of chronic pain and itch. In addition, this projection plays an important role in mediating the analgesic effects of opioids. However, our knowledge about the spinal synaptic targets of RVM projections and their modulation by opioids is unknown. Experimental Approach: We used ex vivo optogenetic stimulation of RVM descending fibres and whole-cell patch-clamp recordings from superficial dorsal horn (SDH) neurons to identify the target neurons and to investigate their descending synaptic inputs. Key Results: We demonstrate that SDH neurons are targeted by descending GABA/glycine inhibitory inputs from the RVM, although glycinergic inputs predominate. These SDH neurons had diverse morphological and electrical properties. This inhibitory synapse was presynaptically suppressed by the kappa opioid receptor agonist U69593. By contrast, the mu-opioid receptor agonist DAMGO inhibited only a subset of RVM-SDH synapses, acting both pre- and postsynaptically, while the delta-opioid receptor agonist deltorphin II had little effect. Conclusion and Implications: Developing reliable and effective alternatives to opioid analgesics requires a detailed, mechanistic understanding of how opioids interact with nociceptive circuits. This study selectively and systematically characterises the synaptic connections between RVM projection neurons and their SDH targets to advance our knowledge of how this descending projection is organised and modulated. In addition, it improves our understanding of how opioids alter spinal pathways involved in the sensations of pain and itch.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Mario Heles ◽  
Petra Mrozkova ◽  
Dominika Sulcova ◽  
Pavel Adamek ◽  
Diana Spicarova ◽  
...  

Abstract Background Opioid analgesics remain widely used for pain treatment despite the related serious side effects. Some of those, such as opioid tolerance and opioid-induced hyperalgesia may be at least partially due to modulation of opioid receptors (OR) function at nociceptive synapses in the spinal cord dorsal horn. It was suggested that increased release of different chemokines under pathological conditions may play a role in this process. The goal of this study was to investigate the crosstalk between the µOR, transient receptor potential vanilloid 1 (TRPV1) receptor and C–C motif ligand 2 (CCL2) chemokine and the involvement of spinal microglia in the modulation of opioid analgesia. Methods Patch-clamp recordings of miniature excitatory postsynaptic currents (mEPSCs) and dorsal root evoked currents (eEPSC) in spinal cord slices superficial dorsal horn neurons were used to evaluate the effect of µOR agonist [D-Ala2, N-Me-Phe4, Gly5-ol]-enkephalin (DAMGO), CCL2, TRPV1 antagonist SB366791 and minocycline. Paw withdrawal test to thermal stimuli was combined with intrathecal (i.t.) delivery of CCL2 and DAMGO to investigate the modulation in vivo. Results Application of DAMGO induced a rapid decrease of mEPSC frequency and eEPSC amplitude, followed by a delayed increase of the eESPC amplitude, which was prevented by SB366791. Chemokine CCL2 treatment significantly diminished all the DAMGO-induced changes. Minocycline treatment prevented the CCL2 effects on the DAMGO-induced eEPSC depression, while mEPSC changes were unaffected. In behavioral experiments, i.t. injection of CCL2 completely blocked DAMGO-induced thermal hypoalgesia and intraperitoneal pre-treatment with minocycline prevented the CCL2 effect. Conclusions Our results indicate that opioid-induced inhibition of the excitatory synaptic transmission could be severely attenuated by increased CCL2 levels most likely through a microglia activation-dependent mechanism. Delayed potentiation of neurotransmission after µOR activation is dependent on TRPV1 receptors activation. Targeting CCL2 and its receptors and TRPV1 receptors in combination with opioid therapy could significantly improve the analgesic properties of opioids, especially during pathological states.


Redox Biology ◽  
2021 ◽  
pp. 102216
Author(s):  
Kun-Long Zhang ◽  
Shu-Jiao Li ◽  
Xue-Yin Pu ◽  
Fei-Fei Wu ◽  
Hui Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document