rat spinal cord
Recently Published Documents


TOTAL DOCUMENTS

3411
(FIVE YEARS 130)

H-INDEX

133
(FIVE YEARS 5)

2022 ◽  
Vol 17 (7) ◽  
pp. 1505
Author(s):  
Riyi Shi ◽  
SethA Herr ◽  
Liangqin Shi ◽  
Thomas Gianaris ◽  
Yucheng Jiao ◽  
...  

2021 ◽  
Author(s):  
Xianqiao Xie ◽  
Yang Li ◽  
Shanchun Su ◽  
Xiaohui Li ◽  
Xueqin Xu ◽  
...  

Abstract Background The underlying mechanism of chronic pain involves the plasticity in synaptic receptors and neurotransmitters. This study aimed to investigate potential roles of neuroligins (NLs) within the spinal dorsal horn of rats in a newly established bone cancer pain (BCP) model. Methods Using our rat BCP model, we assessed pain hypersensitivity over time. Quantitative real-time polymerase chain reaction and Western blot analysis were performed to investigate NL expression, and NLs were overexpressed in the rat spinal cord using lentiviral vectors. Immunofluorescence staining and whole-cell patch-clamp recordings were deployed to investigate the role of NLs in the development of BCP. Results We observed reduced expression levels of NL1 and NL2, but not NL3, within the rat spinal cord, which were found to be associated with and essential for the development of BCP in our model. Accordingly, NL1 or NL2 overexpression in the spinal cord alleviated mechanical hypersensitivity of rats. Electrophysiological experiments indicated that NL1 and NL2 are involved in BCP via regulating γ-aminobutyric acid-ergic interneuronal synapses and the activity of glutamatergic interneuronal synapses, respectively. Conclusions Our observations unravel the role of NLs in cancer-related chronic pain and further suggest that inhibitory mechanisms are central features of BCP in the spinal dorsal horn. These results provide a new perspective and basis for subsequent studies elucidating the onset and progression of BCP.


2021 ◽  
Author(s):  
Diana M. Osorio-Londono ◽  
Gloria S. Sanchez-Morales ◽  
Gustavo Garcia-Garcia ◽  
Axayacatl Morales-Guadarrama ◽  
Roberto Olayo-Gonzalez

Engineering ◽  
2021 ◽  
Author(s):  
Jian Yang ◽  
Lili Zhao ◽  
Sheng Yi ◽  
Fei Ding ◽  
Yumin Yang ◽  
...  

Author(s):  
Shaaban A. Mousa ◽  
Mohammed Shaqura ◽  
Baled I. Khalefa ◽  
Li Li ◽  
Mohammed Al-Madol ◽  
...  

AbstractCorticotropin-releasing factor (CRF) orchestrates our body’s response to stressful stimuli. Pain is often stressful and counterbalanced by activation of CRF receptors along the nociceptive pathway, although the involvement of the CRF receptor subtypes 1 and/or 2 (CRF-R1 and CRF-R2, respectively) in CRF-induced analgesia remains controversial. Thus, the aim of the present study was to examine CRF-R1 and CRF-R2 expression within the spinal cord of rats with Freund’s complete adjuvant-induced unilateral inflammation of the hind paw using reverse transcriptase polymerase chain reaction, Western blot, radioligand binding, and immunofluorescence confocal analysis. Moreover, the antinociceptive effects of intrathecal (i.t.) CRF were measured by paw pressure algesiometer and their possible antagonism by selective antagonists for CRF-R1 and/or CRF-R2 as well as for opioid receptors. Our results demonstrated a preference for the expression of CRF-R2 over CRF-R1 mRNA, protein, binding sites and immunoreactivity in the dorsal horn of the rat spinal cord. Consistently, CRF as well as CRF-R2 agonists elicited potent dose-dependent antinociceptive effects which were antagonized by the i.t. CRF-R2 selective antagonist K41498, but not by the CRF-R1 selective antagonist NBI35965. In addition, i.t. applied opioid antagonist naloxone dose-dependently abolished the i.t. CRF- as well as CRF-R2 agonist-elicited inhibition of somatic pain. Importantly, double immunofluorescence confocal microscopy of the spinal dorsal horn showed CRF-R2 on enkephalin (ENK)-containing inhibitory interneurons in close opposition of incoming mu-opioid receptor-immunoreactive nociceptive neurons. CRF-R2 was, however, not seen on pre- or on postsynaptic sensory neurons of the spinal cord. Taken together, these findings suggest that i.t. CRF or CRF-R2 agonists inhibit somatic inflammatory pain predominantly through CRF-R2 receptors located on spinal enkephalinergic inhibitory interneurons which finally results in endogenous opioid-mediated pain inhibition.


2021 ◽  
Vol 32 (3) ◽  
pp. 116-122
Author(s):  
Denizhan Divanlıoğlu ◽  
Ece Miser Salihoğlu ◽  
Murat Korkmaz ◽  
Ahmet Eren Seçen ◽  
Özgür Öcal ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Feng Sun ◽  
Haiwei Zhang ◽  
Jianhui Shi ◽  
Tianwen Huang ◽  
Yansong Wang

Spinal cord injury (SCI) is a catastrophic disease that induces a complex cascade of cellular reactions at the local lesion area, including secondary cell death and inflammatory reactions. Accumulating evidence has showed pro- and anti-inflammatory roles of microRNAs (miRNAs), a class of small RNAs, in SCI. The present study is aimed at investigating the effects of two miRNAs, miRNA-146a and miRNA-202-3p, on inflammatory response after SCI. Initially, we found that the expression levels of miRNA-146a and miRNA-202-3p were increased in the plasma samples of 32 SCI patients at days 3 and 7 after admission and the rat spinal cord at days 3 and 7 after SCI modeling compared with healthy controls and sham-operated rats, respectively. The expression levels of TLR4, IRAK1, and TRAF6 were declined in the rat spinal cord at days 1, 3, and 7 after SCI modeling compared with sham-operated rats. Injection of miRNA-146a mimic or miRNA-202-3p mimic decreased TLR4, IRAK1, and TRAF6 expressions in the rat spinal cord at days 1, 3, and 7 after SCI modeling, while injection of miRNA-146a antagomir or miRNA-202-3p antagomir produced opposed results. Subsequent results showed that the expression levels of tumor necrosis factor-α (TNF-α), IL-1β, IL-6, and IL-8 were upregulated in the rat serum at days 1, 3, and 7 after SCI modeling compared with sham-operated rats. Injection of miRNA-146a mimic or miRNA-202-3p mimic decreased TNF-α, IL-1β, IL-6, and IL-8 expression levels in the rat serum at days 1, 3, and 7 after SCI modeling, while injection of miRNA-146a antagomir or miRNA-202-3p antagomir yielded opposed results. The expression levels of TNF-α, IL-1β, IL-6, and IL-8 were higher in the supernatants of PC12 cells transfected with anti-miRNA-146a or anti-miRNA-202-3p than in those transfected with si-TLR4, si-IRAK1, or si-TRAF6. These findings support the notion that miRNA-146a/miRNA-202-3p exerts anti-inflammatory functions after SCI.


Sign in / Sign up

Export Citation Format

Share Document