Transdenumerability of the reals

2020 ◽  
Author(s):  
Matheus Pereira Lobo
Keyword(s):  
The Real ◽  

We show that the real numbers are transdenumerable by setting a one to one map with the set of the transfinite ordinals introduced by Cantor.

2020 ◽  
Author(s):  
Ron Ragusa

In 1891 Georg Cantor published his Diagonal Argument which, he asserted, proved that the real numbers cannot be put into a one-to-one correspondence with the natural numbers. In this paper we will see how by varying the initial conditions of the demonstration we can use Cantor’s method to produce a one-to-one correspondence between the set of natural numbers and the set of infinite binary decimals in the open interval (0, 1).


2020 ◽  
Author(s):  
Ron Ragusa

In 1891 Georg Cantor published his Diagonal Method which, he asserted, proved that the real numbers cannot be put into a one-to-one correspondence with the natural numbers. In this paper we will see how by varying the initial conditions of Cantor’s proof we can use the diagonal method to produce a one-to-one correspondence between the set of natural numbers and the set of infinite binary decimals in the interval (0, 1). In the appendix we demonstrate that using the diagonal method recursively will, at the limit of the process, fully account for all the infinite binary decimals in (0, 1). The proof will cement the one-to-one correspondence between the natural numbers and the infinite binary decimals in (0, 1).


1995 ◽  
Vol 38 (2) ◽  
pp. 223-229
Author(s):  
John Lindsay Orr

AbstractA linearly ordered set A is said to shuffle into another linearly ordered set B if there is an order preserving surjection A —> B such that the preimage of each member of a cofinite subset of B has an arbitrary pre-defined finite cardinality. We show that every countable linearly ordered set shuffles into itself. This leads to consequences on transformations of subsets of the real numbers by order preserving maps.


2007 ◽  
Vol 72 (1) ◽  
pp. 119-122 ◽  
Author(s):  
Ehud Hrushovski ◽  
Ya'acov Peterzil

AbstractWe use a new construction of an o-minimal structure, due to Lipshitz and Robinson, to answer a question of van den Dries regarding the relationship between arbitrary o-minimal expansions of real closed fields and structures over the real numbers. We write a first order sentence which is true in the Lipshitz-Robinson structure but fails in any possible interpretation over the field of real numbers.


2011 ◽  
Vol 54 (2) ◽  
pp. 411-422
Author(s):  
Jaroslav Hančl ◽  
Radhakrishnan Nair ◽  
Simona Pulcerova ◽  
Jan Šustek

AbstractContinuing earlier studies over the real numbers, we study the expressible set of a sequence A = (an)n≥1 of p-adic numbers, which we define to be the set EpA = {∑n≥1ancn: cn ∈ ℕ}. We show that in certain circumstances we can calculate the Haar measure of EpA exactly. It turns out that our results extend to sequences of matrices with p-adic entries, so this is the setting in which we work.


Analysis ◽  
2012 ◽  
pp. 219-236
Keyword(s):  

Author(s):  
Lorenz Halbeisen ◽  
Regula Krapf
Keyword(s):  

Author(s):  
Daniel W. Cunningham
Keyword(s):  

2013 ◽  
Vol 55 (1) ◽  
pp. 37-45
Author(s):  
Roman Wituła ◽  
Konrad Kaczmarek ◽  
Edyta Hetmaniok ◽  
Damian Słota

Abstract In this paper a problem of approximating the real numbers by using the series of real numbers is considered. It is proven that if the given family of sequences of real numbers satisfies some conditions of set-theoretical nature, like being closed under initial subsequences and (additionally) possessing properties of adding and removing elements, then it automatically possesses some approximating properties, like, for example, reaching supremum of the set of sums of subseries.


Sign in / Sign up

Export Citation Format

Share Document