scholarly journals Additive manufacturing of highly reconfigurable plasmonic circuits for terahertz communications

2020 ◽  
Author(s):  
Yang Cao ◽  
Kathirvel Nallappan ◽  
Hichem Guerboukha ◽  
Guofu Xu ◽  
Maksim Skorobogatiy

Terahertz communications is a booming field in rapid development. While in most of the existing terahertz communication systems, modulated THz carrier wave is transmitted via free-space communication channels, the THz waveguide-based integrated solutions can be of great utility both at the transmitter and receiver ends. Thus, at the transmitter end they can be used for steering, beam forming, and multiplexing of the THz signals. At the receiver end, terahertz waveguide-based solutions can be used as reliable interconnects (especially in the geometrically complex environments, ex. intra-vehicle communications), as well as for real-time analogue signal processing such as filtering and demultiplexing. More generally, waveguide-based THz optical circuits are indispensable for miniaturization and mass production of cost-effective THz communication systems. In this work, we present comprehensive numerical, fabrication and optical characterization studies of a new type of modular THz integrated circuits based on the micro-encapsulated two-wire plasmonic waveguides. Particular attention is payed to the design of optimized components such as waveguides, couplers and waveguide Bragg gratings to realize easy to handle, highly reconfigurable terahertz circuits capable of complex functionalities such as multiplexing and demultiplexing. The basic element of all the developed subcomponents is a low-loss low-dispersion two-wire waveguide suspended inside of a protective micro-sized enclosure (cage) using deeply subwavelength dielectric supports. The high resolution stereolithography 3D printing and wet chemistry metal deposition techniques are employed to fabricate such waveguides where the THz light is mainly confined in the air gap between the two wires. First, the straight waveguides are characterized using continuous-wave THz spectroscopy system with the measured transmission loss and group velocity dispersion (GVD) of 6 m-1 and -1.5 ps/THz·cm respectively at the carrier frequency of 140 GHz. Next, waveguide bends and a Y-coupler based on the two coalescing waveguide bends are studied. We find that due to the presence of a cage, the curved two-wire waveguides show smaller bending loss than the free-standing two-wire waveguides of similar geometry. Additionally, we find that relatively tight bends of ~5cm-radius can be well tolerated by adding less than ~10 m-1 propagation losses to the curved waveguide propagation loss. Next, we design and fabricate the two-wire waveguide Bragg gratings by hot stamping a periodic sequence of metal strips onto a paper sheet and inserting it into the air gap between the two-wire waveguides. The geometry of the grating featuring a Bragg frequency of 140 GHz is studied theoretically and numerically, and the optimal waveguide gratings are then realized experimentally. Such structures can have bandwidths as high as ~20 GHz. Finally, using thus developed modular components, a two channel THz Add-Drop Multiplexer (ADM) is demonstrated for the operation at 140 GHz carrier frequency and featuring a spectral width of 2.8 GHz. We believe that the reported modular platform based on the micro-encapsulated two-wire waveguides can have a strong impact on the field of integrated optical circuits for THz signal processing and potentially sensing due to ease of device fabrication (standard 3D printers and wet chemistry), modular design and high degree of reconfigurability, low-loss and low-dispersion of the underlying waveguides, as well as high potential for the real-time tunability of the optical circuits due to ease of access of the modal fields inside the controlled in-cage environment.

2019 ◽  
Vol 12 (1) ◽  
pp. 012005 ◽  
Author(s):  
Xiongbin Yu ◽  
Masaki Sugeta ◽  
Yuichiro Yamagami ◽  
Masayuki Fujita ◽  
Tadao Nagatsuma

2019 ◽  
Vol 37 (24) ◽  
pp. 6072-6079
Author(s):  
Benyuan Zhu ◽  
Robert L. Lingle ◽  
Durgesh S. Vaidya ◽  
M. F. Yan ◽  
Patrick W. Wisk ◽  
...  

Author(s):  
Ehsan Sheybani

Software-defined radios (SDR) are gradually becoming a practical option for implementing RF communication systems due to their low cost, off-the-shelf availability, and flexibility. Although the analog limitations of the hardware devices in these systems create barriers to some applications, creative algorithms in digital signal processing (DSP) can improve the results. In some cases, this improvement is essential to establishing a robust and reliable communication. The universal software radio peripheral (USRP) is a popular hardware that can be used alongside the SDR. Among many capabilities of USRP and its changeable daughter boards is receiving GPS signals. The GPS satellites transmit data on two main frequencies, L1 (1575.42 MHz) and L2 (1227.60 MHz). In this chapter, the focus is on describing a detailed implementation of the real-time DSP-based algorithm for USRP to detect GPS signal, namely the L1 band that transmits at 1575.42 MHz.


Sign in / Sign up

Export Citation Format

Share Document