low loss
Recently Published Documents





2022 ◽  
Vol 310 ◽  
pp. 131423
Leilei Li ◽  
Junting Liu ◽  
Shuyao Cao ◽  
Jie Xu ◽  
Emilia Pawlikowska ◽  
Low Loss ◽  

2022 ◽  
Vol 1 (1) ◽  
pp. 91
Varun Pathania ◽  
Sangyoon Bae ◽  
Kyu-Ha Jang ◽  
Kitae Lee ◽  
Young Uk Jeong

2022 ◽  
Tim van Leent ◽  
Matthias Bock ◽  
Florian Fertig ◽  
Robert Garthoff ◽  
Sebastian Eppelt ◽  

Abstract Heralded entanglement between distant quantum memories is the key resource for quantum networks. Based on quantum repeater protocols, these networks will facilitate efficient large-scale quantum communication and distributed quantum computing. However, despite vast efforts, long-distance fibre based network links have not been realized yet. Here we present results demonstrating heralded entanglement between two independent, remote single-atom quantum memories generated over fibre links with a total length up to 33 km. To overcome the attenuation losses in the long optical fibres of photons initially emitted by the Rubidium quantum memories, we employ polarization-preserving quantum frequency conversion to the low loss telecom band. The presented work represents a milestone towards the realization of efficient quantum network links.

Nanophotonics ◽  
2022 ◽  
Vol 0 (0) ◽  
Chaochao Jian ◽  
Xiangchao Ma ◽  
Jianqi Zhang ◽  
Jiali Jiang

Abstract Borophene monolayer with its intrinsic metallic and anisotropic band structures exhibits extraordinary electronic, optical, and transport properties. Especially, the high density of Dirac electrons enables promising applications for building low-loss broadband SPP devices. However, a systematic characterization of the surface plasmon polariton (SPP) properties and hot carriers generated from the inevitable SPP decay in borophene has not been reported so far. Most importantly, the mechanism for SPP losses remains obscurely quantified. In this work, from a fully first-principles perspective, we explicitly evaluate the main loss effects of SPP in borophene, including the Drude resistance, phonon-assisted intraband and direct interband electronic transitions. With this knowledge, we further calculate the frequency- and polarization-dependent SPP response of borophene, and evaluate some typical application-dependent figure of merits of SPP. On the other hand, we evaluate the generation and transport properties of plasmon-driven hot carriers in borophene, involving energy- and momentum-dependent carrier lifetimes and mean free paths, which provide deeper insight toward the transport of hot carriers at the nanoscale. These results indicate that borophene has promising applications in next-generation low-loss optoelectronic devices and photocatalytic reactors.

Electronics ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 219
Tae-Hyeon Lee ◽  
Ki-Cheol Yoon ◽  
Kwang Gi Kim

A stepped impedance resonator (SIR) is suitable for designing a dual-band bandpass filter (BPF) that can be adjusted to reject spurious bands. A BPF is proposed using an SIR T-shaped meander line and folded structure. The BPF mainly comprises a meander line, a folded structure, and a T-shaped line. A novel BPF is used for the T-shaped line, which operates as a band-stop filter connecting to the center of the BPF. As a result, the complete BPF enables dual-band operation. The insertion and return losses of the first frequency passband (f01) are 0.024 and 17.3 dB, respectively, with a bandwidth of 46% at a center frequency of 2.801 GHz (2.2–3.48 GHz). The insertion and return losses of the second frequency passband (f02) are 0.026 and 17.2 dB, respectively, with a bandwidth of 10% at a center frequency of 4.351 GHz (4.13–4.55 GHz). The proposed BPF provides low loss, a simple structure, and a small size of only 4.29 × 4.08 mm, and it can be integrated into mobile communications systems.

Crystals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 91
Wei Liu ◽  
Laisheng Zhang ◽  
Fan Zhang

Multi-wavelength and multi-channel photonic crystal filters are designed with different sizes considered by using a two-dimensional quadric lattice photonic crystal structure to solve the problems of a multi-channel filter with structure complexity, single-wavelength download, and channel interference. The designed filter consists of a waveguide, reflection wall, multimode microcavity, and output port. Each port can download three different wavelengths. In the communication band from 1.500 to 1.600 μm, the transmittance of each channel is greater than 90%, and the filtering efficiency is high. The size of the non-simplified filter is only 27 μm × 17 μm. On the premise of ensuring low loss transmittance (that is, the transmittance of each port is changed by no more than 10% at the wavelength from 1.5–1.6 μm), the size of the filter can reach 15 μm × 7 μm. This design will greatly reduce the overall structure size of the filter and is suitable for multiplexing and demultiplexing in WDM systems.

2022 ◽  
Jinal Tapar ◽  
Saurabh Kishen ◽  
Naresh Kumar Emani

Abstract All-dielectric nanophotonics is a rapidly developing and practical alternative to plasmonics for nanoscale optics. The electric and magnetic Mie resonances in high-index low-loss dielectric nanoresonators can be engineered to exhibit unique scattering response. Recently, nanophotonic structures satisfying parity-time (PT) symmetry have been shown to exhibit novel scattering responses beyond what can be achieved from the conventional nanoresonators. The complex interference of the magnetic and electric Mie resonances and lattice modes excited in PT-symmetric nanoantenna arrays give rise to a scattering anomaly called lasing spectral singularity (SS), where the scattering coefficients tend to infinity. In our previous work [1], we demonstrated the existence of lasing spectral singularities in vertically stacked 2D GaInP PT-symmetric metasurface. In this paper, we analyze the direction-sensitive scattering response of the PT-symmetric GaInP metasurface by decomposing the total scattered field into the electric and magnetic multipoles. The far-field scattering response at the singularity is highly asymmetric for incidence from either the gain or loss side and can be tuned by changing the geometry. By analyzing the phase of even- and odd-parity higher order multipoles, we explain the observed scattering response over a broad parameter space in terms of generalized Kerker effect. The interference between the direction-dependent excitation of different order multipoles and the overall 2D-lattice resonance opens a route towards designing a special class of tunable sources exhibiting direction-sensitive emission properties.

A. S. Augustine Fletcher ◽  
D. Nirmal ◽  
L. Arivazhagan ◽  
J. Ajayan ◽  
Merlin Gilbert Raj ◽  
Low Loss ◽  

2022 ◽  
Mikko Kokkonen ◽  
Mikko Nelo ◽  
Henrikki Liimatainen ◽  
Jonne Ukkola ◽  
Nuutti Tervo ◽  

Extremely high frequencies used in future wireless communication systems such as 6G require low loss materials to avoid wasting power and maintain acceptable efficiency . Furthermore, especially in the internet...

Sign in / Sign up

Export Citation Format

Share Document