scholarly journals FUNDAMENTAL STUDY ON WIND RESPONSE CONTROL OF STRUCTURES USING THE INERTIAL MASS

2014 ◽  
Vol 79 (706) ◽  
pp. 1773-1781
Author(s):  
Takumi KOMIYA ◽  
Makoto KANDA ◽  
Hiroki KOBAYASHI
2013 ◽  
Vol 43 (4) ◽  
pp. 507-527 ◽  
Author(s):  
Yutaka Nakamura ◽  
Akira Fukukita ◽  
Kazuo Tamura ◽  
Issei Yamazaki ◽  
Taichi Matsuoka ◽  
...  

2016 ◽  
Vol 2016 (0) ◽  
pp. 210
Author(s):  
Kazuma UCHIDA ◽  
Osamu FURUYA ◽  
Hiroshi Kurabayashi ◽  
Sunggook Cho

2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
S. Elias ◽  
R. Rupakhety ◽  
S. Olafsson

This study presents analysis of a benchmark building installed with tuned mass dampers (TMDs) while subjected to wind and earthquake loads. Different TMD schemes are applied to reduce dynamic responses of the building under wind and earthquakes. The coupled equations of motion are formulated and solved using numerical methods. The uncontrolled building (NC) and the controlled building are subjected to a set of 100 earthquake ground motions and wind forces. The effectiveness of using different multiple TMD (MTMD) schemes as opposed to single TMD (STMD) is presented. Optimal TMD parameters and their location are investigated. For a tall structure like the one studied here, TMDs are found to be more effective in controlling acceleration response than displacement, when subjected to wind forces. It is observed that MTMDs with equal stiffness in each of the TMDs (usually considered for wind response control), when optimized for a given structure, are effective in controlling acceleration response under both wind and earthquake forces. However, if the device is designed with equal mass in every floor, it is less effective in controlling wind-induced floor acceleration. Therefore, when it comes to multihazard response control, distributed TMDs with equal stiffnesses should be preferred over those with equal masses.


Sign in / Sign up

Export Citation Format

Share Document