coupled equations
Recently Published Documents


TOTAL DOCUMENTS

785
(FIVE YEARS 151)

H-INDEX

40
(FIVE YEARS 7)

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 490
Author(s):  
Shande Li ◽  
Di Xu ◽  
Xiaoxun Wu ◽  
Renjie Jiang ◽  
Geman Shi ◽  
...  

The existing sandwich structure of the aircraft cabin demonstrates a good sound insulation effect in medium and high frequency bands, but poor in the low frequency band. Therefore, we propose an infinite new lightweight broadband noise control structure and study its sound transmission loss (STL). The structure is an orthogonally rib-stiffened honeycomb double sandwich structure with periodic arrays of shunted piezoelectric patches, and demonstrates lighter mass and better strength than the existing sandwich structure. The structure is equivalent according to Hoff’s equal stiffness theory and the effective medium (EM) method. Using the virtual work principle for a periodic element, two infinite sets of coupled equations are obtained. They are solved by truncating them in a finite range until the solution converges. The correctness and validity of the model are verified by using simulation results and theoretical predictions. Eventually, a further study is performed on the factors influencing the STL. All the results demonstrate that the STL in low-frequency can be improved by the structure, and the sound insulation bandwidth is significantly broadened by adding shunted piezoelectric patches. The structure can provide a new idea for the design of broadband sound insulation.


Author(s):  
Fabiano Guimarães

AbstractOne of the most serious incidents that can occur in offshore drilling and exploration is damage to the well structure and subsea components which can result in uncontrolled hydrocarbon release to the environment and present a safety hazard to rig personnel. Over decades, there have been substantial developments to the mathematical models and algorithms used to analyze the stresses on the related structure and to define the operational and integrity windows in which operations can proceed safely and where the mechanical integrity of the well is preserved. The purpose of this work is to present a time-domain solution to the system of equations that model the dynamic behavior of the riser and casing strings, when connected for well drilling/completion during the event of drift-off of the rig. The model combines a solution using finite differences for the riser dynamics and a recursive method to analyze the behavior of the casing in the soil. It allows for the coupling between the equations related to the riser and casing and for the coupling with the equations that describe the dynamics of the rig when station keeping capabilities are lost. The use of the forward–backward finite-differences coupled with the recursive method does not require linearization of the forces acting on the structure making it an ideal methodology for riser analysis while improving convergence. The findings of this study can help improve understanding of the impact of the watch circle limits to riser/well integrity, whether these limits are set based on a quasi-static drive-off/drift-off or fully dynamic. The gain in accuracy in using the fully coupled equations of drift-off dynamics, where there is interaction between the rig and the top of the riser during drive-off/drift-off, is evaluated, and the effects of varying the riser top tension and the compressive loads on the casing string are also analyzed. In particular, it is shown that the results of the fully coupled system of equations representing the dynamics of the riser and casing during drift-off/drive-off are less conservative than the quasi-static approach. Another important finding is that the gain in accuracy in coupling the top of the riser and the rig during drift-off/drive-off is not substantial, which indicates that solving separately the rig dynamics equations and the riser-casing equations is an approach that provides reasonable results with less computational effort. The model can also be used to evaluate wellhead and casing fatigue during the life of the intervention. Finally, the model limitations are discussed.


2021 ◽  
Vol 4 (4) ◽  
pp. 267-281
Author(s):  
Mohammed A. Hjaji ◽  
Hasan M. Nagiar ◽  
Moftah M. Krar ◽  
Ezedine G. Allaboudi

Starting with total potential energy variational principle, the governing equilibrium coupled equations for the torsional-warping static analysis of open thin-walled beams under various torsional and warping moments are derived. The formulation captures shear deformation effects due to warping. The exact closed form solutions for torsional rotation and warping deformation functions are then developed for the coupled system of two equations. The exact solutions are subsequently used to develop a family of shape functions which exactly satisfy the homogeneous form of the governing coupled equations. A super-convergent finite beam element is then formulated based on the exact shape functions. Key features of the beam element developed include its ability to (a) eliminate spatial discretization arising in commonly used finite elements, and (e) eliminate the need for time discretization. The results based on the present finite element solution are found to be in excellent agreement with those based on exact solution and ABAQUS finite beam element solution at a small fraction of the computational and modelling cost involved.


Author(s):  
Sergio Hojman ◽  
Felipe Asenjo

Abstract A unification in terms of exact solutions for massless Klein–Gordon, Dirac, Maxwell, Rarita– Schwinger, Einstein, and bosonic and fermionic fields of any spin is presented. The method is based on writing all of the relevant dynamical fields in terms of products and derivatives of pre–potential functions, which satisfy d’Alambert equation. The coupled equations satisfied by the pre–potentials are non-linear. Remarkably, there are particular solutions of (gradient) orthogonal pre–potentials that satisfy the usual wave equation which may be used to construct exact non–trivial solutions to Klein–Gordon, Dirac, Maxwell, Rarita–Schwinger, (linearized and full) Einstein and any spin bosonic and fermionic field equations, thus giving rise to an unification of the solutions of all massless field equations for any spin. Some solutions written in terms of orthogonal pre–potentials are presented. Relations of this method to previously developed ones, as well as to other subjects in physics are pointed out.


2021 ◽  
Vol 16 (59) ◽  
pp. 198-211
Author(s):  
Hossein Abbaszadeh Mobaraki ◽  
Ramazan-Ali Jafari-Talookolaei ◽  
Paolo S. Valvo ◽  
Reza Haghani Dogaheh

This paper provides a finite element analysis of laminated composite plates under the action of a moving vehicle. The vehicle is modeled as a rigid body with four suspension systems, each consisting of a spring-dashpot. Overall, the vehicle possesses three degrees of freedom: vertical, rolling, and pitching motions. The equations of motion of the plate are deduced based on first-order shear deformation theory. Using the Euler-Lagrange equations, the system of coupled equations of motion is extracted and solved by using the Newmark time discretization scheme. The algorithm is validated through the comparison of both the free and forced vibration results provided by the present model and exact or numerical results reported in the literature. The effects are investigated of several system parameters on the dynamic response.  


Author(s):  
Mahdi Saadatfar

In this paper, transient response of a simply supported finite length hollow cylinder made of functionally graded piezoelectric material (FGPM) subjected to coupled hygrothermal loading was investigated. The coupled equations of heat conduction and moisture diffusion as well as motion equations and the electrostatic equation of FGPM were solved employing the Fourier series expansion method through the longitudinal direction, the differential quadrature method (DQM) along the radius and Newmark method for time domain. Finally, the distribution of temperature, humidity, electric potential, stresses and displacements was achieved. The effect of coupled and uncoupled hygrothermal loading, grading index and hygrothermal loading was illustrated in the numerical examples. The results show that using the coupled model is vital for analysis of transient response of the cylinder subjected to hygrothermal loading.


Crystals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1523
Author(s):  
Haroon Ur Rasheed ◽  
Saeed Islam ◽  
Maha M. Helmi ◽  
Sam Alsallami ◽  
Zeeshan Khan ◽  
...  

This research investigates the influence of the combined effect of the chemically reactive and thermal radiation on electrically conductive stagnation point flow of nanofluid flow in the presence of a stationary magnetic field. Furthermore, the effect of Newtonian heating, thermal dissipation, and activation energy are considered. The boundary layer theory developed the constitutive partial differential momentum, energy, and diffusion balance equations. The fundamental flow model is changed to a system of coupled ordinary differential equations (ODEs) via proper transformations. These nonlinear-coupled equations are addressed analytically by implementing an efficient analytical method, in which a Mathematica 11.0 programming code is developed for numerical simulation. For optimizing system accuracy, stability and convergence analyses are carried out. The consequences of dimensionless parameters on flow fields are investigated to gain insight into the physical parameters. The result of these physical constraints on momentum and thermal boundary layers, along with concentration profiles, are discussed and demonstrated via plotted graphs. The computational outcomes of skin friction coefficient, mass, and heat transfer rate under the influence of appropriate parameters are demonstrated graphically.


2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Amin Aboubrahim ◽  
Pran Nath ◽  
Zhu-Yao Wang

Abstract Analysis of EDGES data shows an absorption signal of the redshifted 21-cm line of atomic hydrogen at z ∼ 17 which is stronger than expected from the standard ΛCDM model. The absorption signal interpreted as brightness temperature T21 of the 21-cm line gives an amplitude of $$ -{500}_{-500}^{+200} $$ − 500 − 500 + 200 mK at 99% C.L. which is a 3.8σ deviation from what the standard ΛCDM cosmology gives. We present a particle physics model for the baryon cooling where a fraction of the dark matter resides in the hidden sector with a U(1) gauge symmetry and a Stueckelberg mechanism operates mixing the visible and the hidden sectors with the hidden sector consisting of dark Dirac fermions and dark photons. The Stueckelberg mass mixing mechanism automatically generates a millicharge for the hidden sector dark fermions providing a theoretical basis for using millicharged dark matter to produce the desired cooling of baryons seen by EDGES by scattering from millicharged dark matter. We compute the relic density of the millicharged dark matter by solving a set of coupled equations for the dark fermion and dark photon yields and for the temperature ratio of the hidden sector and the visible sector heat baths. For the analysis of baryon cooling, we analyze the evolution equations for the temperatures of baryons and millicharged dark matter as a function of the redshift. We exhibit regions of the parameter space which allow consistency with the EDGES data. We note that the Stueckelberg mechanism arises naturally in strings and the existence of a millicharge would point to its string origin.


2021 ◽  
Vol 10 (4) ◽  
pp. 506-517
Author(s):  
A. K. Singha ◽  
G. S. Seth ◽  
Krishnendu Bhattacharyya ◽  
Dhananjay Yadav ◽  
Ajeet Kumar Verma ◽  
...  

Diffusion-thermo effect (Dufour effect) and thermal-diffusion effect (Soret effect) on an MHD flow through porous medium taking nanoparticles may be considered to be useful in many engineering problems when there is a species concentration along with the solid nanoparticles. To study such an attracting problem, it is necessary to consider the flow to be single-phase. In the present investigation, the hydromagnetic flow of H2O-based nanofluids due to an exponentially expanding sheet saturated in non-Darcian porous material is examined with Dufour and Soret effects. In addition, temperature and species concentration along the surface in flow distribution are considered to be variable exponentially. Two sorts of nanofluids are considered, to be specific, Cu–H2O and Ag–H2O. Use of proper similarity transformations transfers the governing PDEs to coupled ODEs. Then the solutions of the coupled equations are computed by very efficient shooting method. Non-dimensionless velocity species concentration and temperature are introduced in graphical mode for several values of involved parameters. Out of several obtained outcomes, it is noticeable that similar to the magnetic parameter and permeability parameter, due to increase in non-Darcy Forchheimer parameter velocity diminishes and while temperature and species concentration increments are witnessed. Due to presence of Dufour effect, temperature enhances and similarly, the concentration increases for Soret effect. While due to Dufour effect, the concentration initially decreases, but away from surface it increases and similar behaviour is found for temperature in the case of Soret effect. Also, it is obtained that skin-friction coefficient for Cu–H2O nanofluid is larger than it value for Ag–H2O nanofluid. Dufour effect turns into the reason for the reduction of Nusselt number and increment of Sherwood number for both nanofluids, but Soret effect affects the two nanofluids reversely. The analysis and its findings provide some tools which may be applied in engineering and industrial problems.


Author(s):  
Rahul Ghosh

Abstract We present a new approach to study the one-dimensional Dirac equation in the background of a position-dependent mass m. Taking the Fermi velocity vf to be a local variable, we explore the resulting structure of the coupled equations and arrive at an interesting constraint of m turning out to be the inverse square of vf. We address several solvable systems that include the free particle, shifted harmonic oscillator, Coulomb and nonpolynomial potentials. In particular, in the supersymmetric quantum mechanics context, the upper partner of the effective potential yields a new form for an inverse quadratic functional choice of the Fermi velocity.


Sign in / Sign up

Export Citation Format

Share Document