Interaction between System Design and Operations of Variable Speed Limit Systems in Work Zones

Author(s):  
Nicholas J. Fudala ◽  
Michael D. Fontaine
Author(s):  
Josh Van Jura ◽  
David Haines ◽  
Andrew Gemperline

The Utah Department of Transportation (UDOT) implemented dynamic management of portable variable speed limit (PVSL) technology to reduce regulatory speed limits through an active work space (AWS). UDOT also developed and tested an intelligent system approach to alter speed limits in construction work zones. The goal of the PVSL system was to provide a portable and dynamic system that was easy for construction personnel to use to prudently reduce speeds within an AWS and make construction work zones safer for workers and the traveling public, while limiting the need to reduce speed throughout the AWS, rather than the entire construction work zone. This was achieved through temporary regulatory reductions in driver speeds within the immediate boundary of an AWS when workers were on site and exposed to the danger of errant vehicles during active construction. The system also raises speed limits when workers were not present. This PVSL system used a dynamic variable speed limit (VSL) algorithm to raise and lower the regulatory speed limits. The PVSL system also provided a queue warning algorithm that operated independent of the VSL algorithm to control messages posted on the portable variable message sign (PVMS) trailers to disseminate dynamic information to drivers. UDOT has completed 2 years of PVSL system deployment testing in four separate construction work zones to evaluate the effectiveness of the system. This paper highlights key elements that guided development of the PVSL system, along with the successful results from deployment of the system.


2011 ◽  
Vol 97-98 ◽  
pp. 435-439 ◽  
Author(s):  
Bai Ying Shi ◽  
Xue Yu Gao ◽  
Zhi Ge ◽  
Xue Ping Ma

Despite of the fact that the traffic control zone for maintenance work (work zone) has been recognized as one of major priorities to guarantee the traffic safety, only one conventional posted speed limit (PSL) strategy is applied into the organization and management. This article presents the strategy of the variable speed limit (VSL) on highway work zones that brings about gradual deceleration and low speed variance. To evaluate the safety of the proposed VSL strategy, this study uses the microscopic simulation software VISSM to estimate the traffic flow and adopt transversal and longitudinal coefficients of safety (MSDE and cv) to compare the different speed limit strategies. The results of simulation and analysis confirm that VSL yield a substantial decrease the traffic turbulence caused by speed limit and increase the traffic safety throughout work zones.


2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Wei Wang ◽  
Zeyang Cheng

Variable Speed Limit Sign (VSLS) Systems enable speed limits to be changed dynamically in response to traffic conditions so that traffic incidents can be reduced significantly on freeway work zones. In this paper, we examined how many and where VSLS are to be placed and the speed limits to be set and proposed a bilevel programming model to perform this decision making operation. The appropriate speed limits and deployments of VSLS were got by case study, and they were analyzed by a simulation to prove the empirical features of traffic breakdown at freeway work zones. Then the results of model comparison and simulation evaluation illustrate that the proposed method outperforms existing models in terms of maximizing information benefit and minimizing average queue length, total delay, and total stop frequency on the freeway work zone.


2017 ◽  
Vol 11 (10) ◽  
pp. 632-640 ◽  
Author(s):  
Li Zhang ◽  
Lei Zhang ◽  
David K. Hale ◽  
Jia Hu ◽  
Zhitong Huang

2021 ◽  
Vol 11 (6) ◽  
pp. 2574
Author(s):  
Filip Vrbanić ◽  
Edouard Ivanjko ◽  
Krešimir Kušić ◽  
Dino Čakija

The trend of increasing traffic demand is causing congestion on existing urban roads, including urban motorways, resulting in a decrease in Level of Service (LoS) and safety, and an increase in fuel consumption. Lack of space and non-compliance with cities’ sustainable urban plans prevent the expansion of new transport infrastructure in some urban areas. To alleviate the aforementioned problems, appropriate solutions come from the domain of Intelligent Transportation Systems by implementing traffic control services. Those services include Variable Speed Limit (VSL) and Ramp Metering (RM) for urban motorways. VSL reduces the speed of incoming vehicles to a bottleneck area, and RM limits the inflow through on-ramps. In addition, with the increasing development of Autonomous Vehicles (AVs) and Connected AVs (CAVs), new opportunities for traffic control are emerging. VSL and RM can reduce traffic congestion on urban motorways, especially so in the case of mixed traffic flows where AVs and CAVs can fully comply with the control system output. Currently, there is no existing overview of control algorithms and applications for VSL and RM in mixed traffic flows. Therefore, we present a comprehensive survey of VSL and RM control algorithms including the most recent reinforcement learning-based approaches. Best practices for mixed traffic flow control are summarized and new viewpoints and future research directions are presented, including an overview of the currently open research questions.


Sign in / Sign up

Export Citation Format

Share Document