Improving Travel Time Reliability Using Ramp Metering: Field Assessment Results on the A6W Motorway in Paris

Author(s):  
Bhouri, Neila
2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Mohammad K. H. Shehada ◽  
Alexandra Kondyli

Ramp metering has been found to improve traffic conditions on the freeway mainline by breaking the platoons of ramp vehicles minimizing turbulence at the merge locations. The majority of the ramp metering evaluation studies have examined traffic performance under specific demand conditions, whereas travel time reliability and variability aspects have not been adequately addressed. This paper focuses on evaluating two well-known ramp metering algorithms in terms of travel time reliability as well as other performance measures such as queue lengths, throughput, and congestion duration, looking at a wide range of traffic demands throughout a calendar year. The evaluation was done through simulating an 8-mile corridor in Kansas City, KS. The results showed localized improvements due to ramp metering at the northern section of the facility, in terms of travel time reliability, throughput, and congestion duration. It was also shown that ramp metering may cause a new (possibly “hidden”) bottleneck to occur downstream, thus diluting its overall benefits when looking at an entire freeway facility. It is further noted that although ALINEA performed better than HERO on the mainline, traffic operations on the on-ramps significantly deteriorated using isolated control.


Author(s):  
Sharmili Banik ◽  
Anil Kumar ◽  
Lelitha Vanajakshi

Author(s):  
S M A Bin Al Islam ◽  
Mehrdad Tajalli ◽  
Rasool Mohebifard ◽  
Ali Hajbabaie

The effectiveness of adaptive signal control strategies depends on the level of traffic observability, which is defined as the ability of a signal controller to estimate traffic state from connected vehicle (CV), loop detector data, or both. This paper aims to quantify the effects of traffic observability on network-level performance, traffic progression, and travel time reliability, and to quantify those effects for vehicle classes and major and minor directions in an arterial corridor. Specifically, we incorporated loop detector and CV data into an adaptive signal controller and measured several mobility- and event-based performance metrics under different degrees of traffic observability (i.e., detector-only, CV-only, and CV and loop detector data) with various CV market penetration rates. A real-world arterial street of 10 intersections in Seattle, Washington was simulated in Vissim under peak hour traffic demand level with transit vehicles. The results showed that a 40% CV market share was required for the adaptive signal controller using only CV data to outperform signal control with only loop detector data. At the same market penetration rate, signal control with CV-only data resulted in the same traffic performance, progression quality, and travel time reliability as the signal control with CV and loop detector data. Therefore, the inclusion of loop detector data did not further improve traffic operations when the CV market share reached 40%. Integrating 10% of CV data with loop detector data in the adaptive signal control improved traffic performance and travel time reliability.


Sign in / Sign up

Export Citation Format

Share Document