An Infinite Family of Curves of Genus 2 over the Field of Rational Numbers Whose Jacobian Varieties Contain Rational Points of Order 28

2018 ◽  
Vol 482 (4) ◽  
pp. 385-388 ◽  
Author(s):  
V. Platonov ◽  
◽  
F. Fyodorov ◽  
2004 ◽  
Vol 108 (2) ◽  
pp. 241-267 ◽  
Author(s):  
L. Kulesz ◽  
G. Matera ◽  
E. Schost

2004 ◽  
Vol 47 (3) ◽  
pp. 398-406
Author(s):  
David McKinnon

AbstractLet V be a K3 surface defined over a number field k. The Batyrev-Manin conjecture for V states that for every nonempty open subset U of V, there exists a finite set ZU of accumulating rational curves such that the density of rational points on U − ZU is strictly less than the density of rational points on ZU. Thus, the set of rational points of V conjecturally admits a stratification corresponding to the sets ZU for successively smaller sets U.In this paper, in the case that V is a Kummer surface, we prove that the Batyrev-Manin conjecture for V can be reduced to the Batyrev-Manin conjecture for V modulo the endomorphisms of V induced by multiplication by m on the associated abelian surface A. As an application, we use this to show that given some restrictions on A, the set of rational points of V which lie on rational curves whose preimages have geometric genus 2 admits a stratification of Batyrev-Manin type.


2015 ◽  
Vol 145 (6) ◽  
pp. 1153-1182 ◽  
Author(s):  
Anne-Maria Ernvall-Hytönen ◽  
Kalle Leppälä ◽  
Tapani Matala-aho

Let 𝕀 denote an imaginary quadratic field or the field ℚ of rational numbers and let ℤ𝕀denote its ring of integers. We shall prove a new explicit Baker-type lower bound for a ℤ𝕀-linear form in the numbers 1, eα1, . . . , eαm,m⩾ 2, whereα0= 0,α1, . . . ,αmarem+ 1 different numbers from the field 𝕀. Our work gives substantial improvements on the existing explicit versions of Baker’s work about exponential values at rational points. In particular, dependencies onmare improved.


2015 ◽  
Vol 18 (1) ◽  
pp. 170-197 ◽  
Author(s):  
Reinier Bröker ◽  
Everett W. Howe ◽  
Kristin E. Lauter ◽  
Peter Stevenhagen

AbstractWe study the problem of efficiently constructing a curve $C$ of genus $2$ over a finite field $\mathbb{F}$ for which either the curve $C$ itself or its Jacobian has a prescribed number $N$ of $\mathbb{F}$-rational points.In the case of the Jacobian, we show that any ‘CM-construction’ to produce the required genus-$2$ curves necessarily takes time exponential in the size of its input.On the other hand, we provide an algorithm for producing a genus-$2$ curve with a given number of points that, heuristically, takes polynomial time for most input values. We illustrate the practical applicability of this algorithm by constructing a genus-$2$ curve having exactly $10^{2014}+9703$ (prime) points, and two genus-$2$ curves each having exactly $10^{2013}$ points.In an appendix we provide a complete parametrization, over an arbitrary base field $k$ of characteristic neither two nor three, of the family of genus-$2$ curves over $k$ that have $k$-rational degree-$3$ maps to elliptic curves, including formulas for the genus-$2$ curves, the associated elliptic curves, and the degree-$3$ maps.Supplementary materials are available with this article.


2012 ◽  
Vol 12 (01) ◽  
pp. 1250128 ◽  
Author(s):  
STEPHEN C. BROWN ◽  
BLAIR K. SPEARMAN ◽  
QIDUAN YANG

We characterize irreducible trinomials x6 + Ax + B with coefficients in a number field K which have Galois group C6, S3 or C3 × S3. This characterization relates these trinomials to the K-rational points on a genus 2 curve. We determine these trinomials explicitly in the case K = ℚ.


1999 ◽  
Vol 59 (2) ◽  
pp. 263-269 ◽  
Author(s):  
R.H. Buchholz ◽  
J.A. MacDougall

We study triangles and cyclic quadrilaterals which have rational area and whose sides form geometric or arithmetic progressions. A complete characterisation is given for the infinite family of triangles with sides in arithmetic progression. We show that there are no triangles with sides in geometric progression. We also show that apart from the square there are no cyclic quadrilaterals whose sides form either a geometric or an arithmetic progression. The solution of both quadrilateral cases involves searching for rational points on certain elliptic curves.


Sign in / Sign up

Export Citation Format

Share Document