scholarly journals An approach to clustering biological phenotypes

2017 ◽  
Author(s):  
◽  
Avimanyou Kumar Vatsa

Recently emerging approaches to high-throughput phenotyping have become important tools in unraveling the biological basis of agronomically and medically important phenotypes. These experiments produce very large sets of either low or high-dimensional data. Finding clusters in the entire space of high-dimensional data (HDD) is a challenging task, because the relative distances between any two objects converge to zero with increasing dimensionality. Additionally, real data may not be mathematically well behaved. Finally, many clusters are expected on biological grounds to be "natural" -- that is, to have irregular, overlapping boundaries in different subsets of the dimensions. More precisely, the natural clusters of the data could differ in shape, size, density, and dimensionality; and they might not be disjoint. In principle, clustering such data could be done by dimension reduction methods. However, these methods convert many dimensions to a smaller set of dimensions that make the clustering results difficult to interpret and may also lead to a significant loss of information. Another possible approach is to find subspaces (subsets of dimensions) in the entire data space of the HDD. However, the existing subspace methods don't discover natural clusters. Therefore, in this dissertation I propose a novel data preprocessing method, demonstrating that a group of phenotypes are interdependent, and propose a novel density-based subspace clustering algorithm for high-dimensional data, called Dynamic Locally Density Adaptive Scalable Subspace Clustering (DynaDASC). This algorithm is relatively locally density adaptive, scalable, dynamic, and nonmetric in nature, and discovers natural clusters.

2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Jan Kalina ◽  
Anna Schlenker

The Minimum Redundancy Maximum Relevance (MRMR) approach to supervised variable selection represents a successful methodology for dimensionality reduction, which is suitable for high-dimensional data observed in two or more different groups. Various available versions of the MRMR approach have been designed to search for variables with the largest relevance for a classification task while controlling for redundancy of the selected set of variables. However, usual relevance and redundancy criteria have the disadvantages of being too sensitive to the presence of outlying measurements and/or being inefficient. We propose a novel approach called Minimum Regularized Redundancy Maximum Robust Relevance (MRRMRR), suitable for noisy high-dimensional data observed in two groups. It combines principles of regularization and robust statistics. Particularly, redundancy is measured by a new regularized version of the coefficient of multiple correlation and relevance is measured by a highly robust correlation coefficient based on the least weighted squares regression with data-adaptive weights. We compare various dimensionality reduction methods on three real data sets. To investigate the influence of noise or outliers on the data, we perform the computations also for data artificially contaminated by severe noise of various forms. The experimental results confirm the robustness of the method with respect to outliers.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Singh Vijendra ◽  
Sahoo Laxman

Clustering high-dimensional data has been a major challenge due to the inherent sparsity of the points. Most existing clustering algorithms become substantially inefficient if the required similarity measure is computed between data points in the full-dimensional space. In this paper, we have presented a robust multi objective subspace clustering (MOSCL) algorithm for the challenging problem of high-dimensional clustering. The first phase of MOSCL performs subspace relevance analysis by detecting dense and sparse regions with their locations in data set. After detection of dense regions it eliminates outliers. MOSCL discovers subspaces in dense regions of data set and produces subspace clusters. In thorough experiments on synthetic and real-world data sets, we demonstrate that MOSCL for subspace clustering is superior to PROCLUS clustering algorithm. Additionally we investigate the effects of first phase for detecting dense regions on the results of subspace clustering. Our results indicate that removing outliers improves the accuracy of subspace clustering. The clustering results are validated by clustering error (CE) distance on various data sets. MOSCL can discover the clusters in all subspaces with high quality, and the efficiency of MOSCL outperforms PROCLUS.


2009 ◽  
Vol 35 (7) ◽  
pp. 859-866
Author(s):  
Ming LIU ◽  
Xiao-Long WANG ◽  
Yuan-Chao LIU

Sign in / Sign up

Export Citation Format

Share Document