scholarly journals Feeling the beat: an investigation into the neural correlates of vibrotactile beat perception

2021 ◽  
Author(s):  
Sean A. Gilmore

The current study investigates our ability to perceive and synchronize movements to the beat of rhythms presented through vibrations to the skin. I compared EEG recordings and tapping accuracy to rhythms that varied in modality: auditory-only, vibrotactile, multimodal (vibrotactile and auditory) and complexity: metronome and simple rhythms. The neural data showed that signals localized to the primary auditory cortex showed a larger spike in power at beat frequencies presentation of auditory compared to vibrotactile rhythms. Tapping ability was found to be lowest in vibrotactile compared to auditory and multimodal rhythms. Auditory only and multimodal rhythms did not show a statistical difference in the neural or tapping data. Tapping variability predicted neural entrainment, such that more variable tapping elicited a more entrained neural signal in primary auditory cortex, and less in pre-motor regions. In conclusion, these results show how the temporal processing of rhythm is superior in auditory modalities.

2021 ◽  
Author(s):  
Sean A. Gilmore

The current study investigates our ability to perceive and synchronize movements to the beat of rhythms presented through vibrations to the skin. I compared EEG recordings and tapping accuracy to rhythms that varied in modality: auditory-only, vibrotactile, multimodal (vibrotactile and auditory) and complexity: metronome and simple rhythms. The neural data showed that signals localized to the primary auditory cortex showed a larger spike in power at beat frequencies presentation of auditory compared to vibrotactile rhythms. Tapping ability was found to be lowest in vibrotactile compared to auditory and multimodal rhythms. Auditory only and multimodal rhythms did not show a statistical difference in the neural or tapping data. Tapping variability predicted neural entrainment, such that more variable tapping elicited a more entrained neural signal in primary auditory cortex, and less in pre-motor regions. In conclusion, these results show how the temporal processing of rhythm is superior in auditory modalities.


1999 ◽  
Vol 81 (5) ◽  
pp. 2570-2581 ◽  
Author(s):  
Jos J. Eggermont

Neural correlates of gap detection in three auditory cortical fields in the cat. Mimimum detectable gaps in noise in humans are independent of the position of the gap, whereas in cat primary auditory cortex (AI) they are position dependent. The position dependence in other cortical areas is not known and may resolve this contrast. This study presents minimum detectable gap-in-noise values for which single-unit (SU), multiunit (MU) recordings and local field potentials (LFPs) show an onset response to the noise after the gap. The gap, which varied in duration between 5 and 70 ms, was preceded by a noise burst of either 5 ms (early gap) or 500 ms (late gap) duration. In 10 cats, simultaneous recordings were made with one electrode each in AI, anterior auditory field (AAF), and secondary auditory cortex (AII). In nine additional cats, two electrodes were inserted in AI and one in AAF. Minimum detectable gaps based on SU, MU, or LFP data in each cortical area were the same. In addition, very similar minimum early-gap values were found in all three areas (means, 36.1–41.7 ms). The minimum late-gap values were also similar in AI and AII (means, 11.1 and 11.7 ms), whereas AAF showed significantly larger minimum late-gap durations (mean 21.5 ms). For intensities >35 dB SPL, distributions of minimum early-gap durations in AAF and AII had modal values at ∼45 ms. In AI, the distribution was more uniform. Distributions for minimum late-gap duration were skewed toward low values (mode at 5 ms), but high values (≤60 ms) were found infrequently as well. A small fraction of units showed a response after the gap only for early-gap durations <20 ms. In AI and AII, the mean minimum early- and late-gap durations decreased significantly with increase in the neuron’s characteristic frequency (CF), whereas the lower boundary for the minimum early gap was CF independent. The findings suggest that human within-perceptual-channel gap detection, showing no dependence of the minimum detectable gap on the duration of the leading noise burst, likely is based on the lower envelope of the distribution of neural minimum gap values of units in AI and AAF. In contrast, across-perceptual-channel gap detection, which shows a decreasing minimum detectable gap with increasing duration of the leading noise burst, likely is based on the comparison ofon responses from populations of neurons that converge on units in AII.


2008 ◽  
Vol 90 (2) ◽  
pp. 347-357 ◽  
Author(s):  
Matthew I. Leon ◽  
Bonnie S. Poytress ◽  
Norman M. Weinberger

2011 ◽  
Vol 105 (2) ◽  
pp. 712-730 ◽  
Author(s):  
Brian H. Scott ◽  
Brian J. Malone ◽  
Malcolm N. Semple

The anatomy and connectivity of the primate auditory cortex has been modeled as a core region receiving direct thalamic input surrounded by a belt of secondary fields. The core contains multiple tonotopic fields (including the primary auditory cortex, AI, and the rostral field, R), but available data only partially address the degree to which those fields are functionally distinct. This report, based on single-unit recordings across four hemispheres in awake macaques, argues that the functional organization of auditory cortex is best understood in terms of temporal processing. Frequency tuning, response threshold, and strength of activation are similar between AI and R, validating their inclusion as a unified core, but the temporal properties of the fields clearly differ. Onset latencies to pure tones are longer in R (median, 33 ms) than in AI (20 ms); moreover, synchronization of spike discharges to dynamic modulations of stimulus amplitude and frequency, similar to those present in macaque and human vocalizations, suggest distinctly different windows of temporal integration in AI (20–30 ms) and R (100 ms). Incorporating data from the adjacent auditory belt reveals that the divergence of temporal properties within the core is in some cases greater than the temporal differences between core and belt.


2002 ◽  
Vol 99 (15) ◽  
pp. 10114-10119 ◽  
Author(s):  
D. T. Blake ◽  
F. Strata ◽  
A. K. Churchland ◽  
M. M. Merzenich

2017 ◽  
Vol 28 (12) ◽  
pp. 4319-4335 ◽  
Author(s):  
Fenghua Xie ◽  
Ling You ◽  
Dongqin Cai ◽  
Miaomiao Liu ◽  
Yin Yue ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document