auditory cortex
Recently Published Documents


TOTAL DOCUMENTS

4550
(FIVE YEARS 628)

H-INDEX

160
(FIVE YEARS 13)

2022 ◽  
Author(s):  
Julien Besle ◽  
Rosa-Maria Sánchez-Panchuelo ◽  
Susan Francis ◽  
Katrin Krumbholz

Frequency selectivity is a ubiquitous property of auditory neurons. Measuring it in human auditory cortex may be crucial for understanding common auditory deficits, but current non-invasive neuroimaging techniques can only measure the aggregate response of large populations of cells, thereby overestimating tuning width. Here we attempted to estimate neuronal frequency tuning in human auditory cortex using a combination of fMRI-adaptation paradigm at 7T and computational modelling. We measured the BOLD response in the auditory cortex of eleven participants to a high frequency (3.8 kHz) probe presented alone or preceded by adaptors at different frequencies (0.5 to 3.8 kHz). From these data, we derived both the response tuning curves (the BOLD response to adaptors alone as a function of adaptor frequency) and adaptation tuning curves (the degree of response suppression to the probe as a function of adaptor frequency, assumed to reflect neuronal tuning) in primary and secondary auditory cortical areas, delineated in each participant. Results suggested the existence of both frequency-independent and frequency-specific adaptation components, with the latter being more frequency-tuned than response tuning curves. Using a computational model of neuronal adaptation and BOLD non-linearity in topographically-organized cortex, we demonstrate both that the frequency-specific adaptation component overestimates the underlying neuronal frequency tuning and that frequency-specific and frequency-independent adaptation component cannot easily be disentangled from the adaptation tuning curve. By fitting our model directly to the response and adaptation tuning curves, we derive a range of plausible values for neuronal frequency tuning. Our results suggest that fMRI adaptation is suitable for measuring neuronal frequency tuning properties in human auditory cortex, provided population effects and the non-linearity of BOLD response are taken into account.


2022 ◽  
Vol 15 ◽  
Author(s):  
Marcus Jeschke ◽  
Frank W. Ohl ◽  
Xiaoqin Wang

The auditory thalamus is the central nexus of bottom-up connections from the inferior colliculus and top-down connections from auditory cortical areas. While considerable efforts have been made to investigate feedforward processing of sounds in the auditory thalamus (medial geniculate body, MGB) of non-human primates, little is known about the role of corticofugal feedback in the MGB of awake non-human primates. Therefore, we developed a small, repositionable cooling probe to manipulate corticofugal feedback and studied neural responses in both auditory cortex and thalamus to sounds under conditions of normal and reduced cortical temperature. Cooling-induced increases in the width of extracellularly recorded spikes in auditory cortex were observed over the distance of several hundred micrometers away from the cooling probe. Cortical neurons displayed reduction in both spontaneous and stimulus driven firing rates with decreased cortical temperatures. In thalamus, cortical cooling led to increased spontaneous firing and either increased or decreased stimulus driven activity. Furthermore, response tuning to modulation frequencies of temporally modulated sounds and spatial tuning to sound source location could be altered (increased or decreased) by cortical cooling. Specifically, best modulation frequencies of individual MGB neurons could shift either toward higher or lower frequencies based on the vector strength or the firing rate. The tuning of MGB neurons for spatial location could both sharpen or widen. Elevation preference could shift toward higher or lower elevations and azimuth tuning could move toward ipsilateral or contralateral locations. Such bidirectional changes were observed in many parameters which suggests that the auditory thalamus acts as a filter that could be adjusted according to behaviorally driven signals from auditory cortex. Future work will have to delineate the circuit elements responsible for the observed effects.


2022 ◽  
pp. 1-16
Author(s):  
Jamal A. Williams ◽  
Elizabeth H. Margulis ◽  
Samuel A. Nastase ◽  
Janice Chen ◽  
Uri Hasson ◽  
...  

Abstract Recent fMRI studies of event segmentation have found that default mode regions represent high-level event structure during movie watching. In these regions, neural patterns are relatively stable during events and shift at event boundaries. Music, like narratives, contains hierarchical event structure (e.g., sections are composed of phrases). Here, we tested the hypothesis that brain activity patterns in default mode regions reflect the high-level event structure of music. We used fMRI to record brain activity from 25 participants (male and female) as they listened to a continuous playlist of 16 musical excerpts and additionally collected annotations for these excerpts by asking a separate group of participants to mark when meaningful changes occurred in each one. We then identified temporal boundaries between stable patterns of brain activity using a hidden Markov model and compared the location of the model boundaries to the location of the human annotations. We identified multiple brain regions with significant matches to the observer-identified boundaries, including auditory cortex, medial pFC, parietal cortex, and angular gyrus. From these results, we conclude that both higher-order and sensory areas contain information relating to the high-level event structure of music. Moreover, the higher-order areas in this study overlap with areas found in previous studies of event perception in movies and audio narratives, including regions in the default mode network.


NeuroImage ◽  
2022 ◽  
pp. 118879
Author(s):  
Seung-Goo Kim ◽  
Tobias Overath ◽  
William Sedley ◽  
Sukhbinder Kumar ◽  
Sundeep Teki ◽  
...  

2022 ◽  
Author(s):  
Xiaoyan Ma ◽  
Ningxuan Chen ◽  
Fangyuan Wang ◽  
Chi Zhang ◽  
Jing Dai ◽  
...  

2021 ◽  
Author(s):  
Katherine C. M. Chew ◽  
Vineet Kumar ◽  
Andrew Y. Y. Tan

Tone-evoked synaptic excitation and inhibition are highly correlated in many neurons with V-shaped tuning curves in the primary auditory cortex of pentobarbital-anesthetized rats. In contrast, there is less correlation between spontaneous excitation and inhibition in visual cortex neurons under the same anesthetic conditions. However, it was not known whether the primary auditory cortex resembles visual cortex in having spontaneous excitation and inhibition that is less correlated than tone-evoked excitation and inhibition. Here we report whole-cell voltage-clamp measurements of spontaneous excitation and inhibition in primary auditory cortex neurons of pentobarbital-anesthetized rats. The larger excursions of both spontaneous excitatory and inhibitory currents appeared to consist of distinct events, with the inhibitory event rate typically lower than the excitatory event rate. We use the ratio of the excitatory event rate to the inhibitory event rate, and the assumption that the excitatory and inhibitory synaptic currents can each be reasonably described as a filtered Poisson process, to estimate the maximum spontaneous excitatory-inhibitory correlation for each neuron. In a subset of neurons, we also measured tone-evoked excitation and inhibition. In neurons with V-shaped tuning curves, although tone-evoked excitation and inhibition were highly correlated, the spontaneous inhibitory event rate was typically sufficiently lower than the spontaneous excitatory event rate to indicate a lower excitatory-inhibitory correlation for spontaneous activity than for tone-evoked responses.


Sign in / Sign up

Export Citation Format

Share Document