An approximate method for solving the inverse coefficient problem

2021 ◽  
Vol 24 (2) ◽  
pp. 5-22
Author(s):  
I. V. Boykov ◽  
V. A. Ryazantsev
Author(s):  
Ilya V. Boikov ◽  
Vladimir A. Ryazantsev

The problem of recovering a value of the constant coefficient in heat equation for one- and two-dimensional cases is considered in the paper. This inverse coefficient problem has broad range of applications in physics and engineering, in particular, for modelling heat exchange processes and for studying properties of materials and designing of engineering constructions. In order to solve the problem an approximate method is constructed; it is based on the continuous operator method for solving nonlinear equations. The advantages of the proposed method are its simplicity and universality. The last property allows to apply the method to a wide range of problems. In particular, in constructing and justifying a continuous operator method, in contrast to the Newton–Kantorovich method, the continuous reversibility of Frechet or Gato derivatives is not required. Moreover, derivatives may not exist on sets of measure zero. The application of continuous operator method to the solution of an inverse coefficient problem with a constant coefficient makes it possible to minimize additional conditions -- there is enough information about the exact solution at a single point x∗,t∗. Solving several model problems illustrates the high efficiency of the proposed method.


2012 ◽  
Vol 9 (2) ◽  
pp. 65-70
Author(s):  
E.V. Karachurina ◽  
S.Yu. Lukashchuk

An inverse coefficient problem is considered for time-fractional anomalous diffusion equations with the Riemann-Liouville and Caputo fractional derivatives. A numerical algorithm is proposed for identification of anomalous diffusivity which is considered as a function of concentration. The algorithm is based on transformation of inverse coefficient problem to extremum problem for the residual functional. The steepest descent method is used for numerical solving of this extremum problem. Necessary expressions for calculating gradient of residual functional are presented. The efficiency of the proposed algorithm is illustrated by several test examples.


2018 ◽  
Vol 26 (3) ◽  
pp. 349-368 ◽  
Author(s):  
Alemdar Hasanov

AbstractThis paper studies the Lipschitz continuity of the Fréchet gradient of the Tikhonov functional {J(k):=(1/2)\lVert u(0,\cdot\,;k)-f\rVert^{2}_{L^{2}(0,T)}} corresponding to an inverse coefficient problem for the {1D} parabolic equation {u_{t}=(k(x)u_{x})_{x}} with the Neumann boundary conditions {-k(0)u_{x}(0,t)=g(t)} and {u_{x}(l,t)=0}. In addition, compactness and Lipschitz continuity of the input-output operator\Phi[k]:=u(x,t;k)\lvert_{x=0^{+}},\quad\Phi[\,\cdot\,]:\mathcal{K}\subset H^{1% }(0,l)\mapsto H^{1}(0,T),as well as solvability of the regularized inverse problem and the Lipschitz continuity of the Fréchet gradient of the Tikhonov functional are proved. Furthermore, relationships between the sufficient conditions for the Lipschitz continuity of the Fréchet gradient and the regularity of the weak solution of the direct problem as well as the measured output {f(t):=u(0,t;k)} are established. One of the derived lemmas also introduces a useful application of the Lipschitz continuity of the Fréchet gradient. This lemma shows that an important advantage of gradient methods comes when dealing with the functionals of class {C^{1,1}(\mathcal{K})}. Specifically, this lemma asserts that if {J\in C^{1,1}(\mathcal{K})} and {\{k^{(n)}\}\subset\mathcal{K}} is the sequence of iterations obtained by the Landweber iteration algorithm {k^{(n+1)}=k^{(n)}+\omega_{n}J^{\prime}(k^{(n)})}, then for {\omega_{n}\in(0,2/L_{g})}, where {L_{g}>0} is the Lipschitz constant, the sequence {\{J(k^{(n)})\}} is monotonically decreasing and {\lim_{n\to\infty}\lVert J^{\prime}(k^{(n)})\rVert=0}.


Sign in / Sign up

Export Citation Format

Share Document