parabolic equation
Recently Published Documents


TOTAL DOCUMENTS

3178
(FIVE YEARS 536)

H-INDEX

50
(FIVE YEARS 6)

Author(s):  
Erik Burman ◽  
Stefan Frei ◽  
Andre Massing

AbstractThis article is concerned with the discretisation of the Stokes equations on time-dependent domains in an Eulerian coordinate framework. Our work can be seen as an extension of a recent paper by Lehrenfeld and Olshanskii (ESAIM: M2AN 53(2):585–614, 2019), where BDF-type time-stepping schemes are studied for a parabolic equation on moving domains. For space discretisation, a geometrically unfitted finite element discretisation is applied in combination with Nitsche’s method to impose boundary conditions. Physically undefined values of the solution at previous time-steps are extended implicitly by means of so-called ghost penalty stabilisations. We derive a complete a priori error analysis of the discretisation error in space and time, including optimal $$L^2(L^2)$$ L 2 ( L 2 ) -norm error bounds for the velocities. Finally, the theoretical results are substantiated with numerical examples.


2022 ◽  
Vol 130 (2) ◽  
pp. 260
Author(s):  
А.Б. Плаченов ◽  
Г.Н. Дьякова

A new class of localized solutions of paraxial parabolic equation is introduced. Each solution is a product of some Gaussian-type localized axisymmetric function (different from the fundamental mode) and an amplitude factor. The latter can be expressed via an arbitrary solution of the Helmholtz equation on an auxiliary two-sheet complex surface. The class under consideration contains well known and novel solutions, including those describing optical vortices of various orders.


2022 ◽  
Vol 27 (1) ◽  
pp. 19-37
Author(s):  
Ning Duan ◽  
Xiaopeng Zhao

This paper is concerned with a sixth-order diffusion equation, which describes continuum evolution of film-free surface. By using the regularity estimates for the semigroups, iteration technique and the classical existence theorem of global attractors we verified the existence of global attractor for this surface diffusion equation in the spaces H3(Ω) and fractional-order spaces Hk(Ω), where 0 ≤ k < ∞.


Sign in / Sign up

Export Citation Format

Share Document