The partial clone of linear tree languages

2017 ◽  
Vol 60 (3) ◽  
pp. 640-654
Author(s):  
N. Lekkoksung ◽  
K. Denecke
Keyword(s):  
2019 ◽  
Vol 60 (3) ◽  
pp. 497-507 ◽  
Author(s):  
N. Lekkoksung ◽  
K. Denecke
Keyword(s):  

1982 ◽  
Vol 5 (3-4) ◽  
pp. 279-299
Author(s):  
Alberto Pettorossi

In this paper we consider combinators as tree transducers: this approach is based on the one-to-one correspondence between terms of Combinatory Logic and trees, and on the fact that combinators may be considered as transformers of terms. Since combinators are terms themselves, we will deal with trees as objects to be transformed and tree transformers as well. Methods for defining and studying tree rewriting systems inside Combinatory Weak Reduction Systems and Weak Combinatory Logic are also analyzed and particular attention is devoted to the problem of finiteness and infinity of the generated tree languages (here defined). This implies the study of the termination of the rewriting process (i.e. reduction) for combinators.


Algorithmica ◽  
2007 ◽  
Vol 49 (2) ◽  
pp. 127-146 ◽  
Author(s):  
Frédéric Magniez ◽  
Michel de Rougemont

2010 ◽  
Vol 21 (03) ◽  
pp. 257-276 ◽  
Author(s):  
ANDREAS MALETTI ◽  
CĂTĂLIN IONUŢ TÎRNĂUCĂ

The fundamental properties of the class QUASI of quasi-relabeling relations are investigated. A quasi-relabeling relation is a tree relation that is defined by a tree bimorphism (φ, L, ψ), where φ and ψ are quasi-relabeling tree homomorphisms and L is a regular tree language. Such relations admit a canonical representation, which immediately also yields that QUASI is closed under finite union. However, QUASI is not closed under intersection and complement. In addition, many standard relations on trees (e.g., branches, subtrees, v-product, v-quotient, and f-top-catenation) are not quasi-relabeling relations. If quasi-relabeling relations are considered as string relations (by taking the yields of the trees), then every Cartesian product of two context-free string languages is a quasi-relabeling relation. Finally, the connections between quasi-relabeling relations, alphabetic relations, and classes of tree relations defined by several types of top-down tree transducers are presented. These connections yield that quasi-relabeling relations preserve the regular and algebraic tree languages.


1994 ◽  
Vol 14 (3) ◽  
pp. 1956-1963
Author(s):  
J L Johnson ◽  
T G Beito ◽  
C J Krco ◽  
D O Toft

Immunoprecipitation of unactivated avian progesterone receptor results in the copurification of hsp90, hsp70, and three additional proteins, p54, p50, and p23. p23 is also present in immunoaffinity-purified hsp90 complexes along with hsp70 and another protein, p60. Antibody and cDNA probes for p23 were prepared in an effort to elucidate the significance and function of this protein. Antibodies to p23 detect similar levels of p23 in all tissues tested and cross-react with a protein of the same size in mice, rabbits, guinea pigs, humans, and Saccharomyces cerevisiae, indicating that p23 is a conserved protein of broad tissue distribution. These antibodies were used to screen a chicken brain cDNA library, resulting in the isolation of a 468-bp partial cDNA clone encoding a sequence containing four sequences corresponding to peptide fragments isolated from chicken p23. This partial clone was subsequently used to isolate a full-length human cDNA clone. The human cDNA encodes a protein of 160 amino acids that does not show homology to previously identified proteins. The chicken and human cDNAs are 88% identical at the DNA level and 96.3% identical at the protein level. p23 is a highly acidic phosphoprotein with an aspartic acid-rich carboxy-terminal domain. Bacterially overexpressed human p23 was used to raise several monoclonal antibodies to p23. These antibodies specifically immunoprecipitate p23 in complex with hsp90 in all tissues tested and can be used to immunoaffinity isolate progesterone receptor complexes from chicken oviduct cytosol.


2000 ◽  
Vol 73 (1-2) ◽  
pp. 1-3 ◽  
Author(s):  
Erkki Mäkinen
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document