peptide fragments
Recently Published Documents


TOTAL DOCUMENTS

871
(FIVE YEARS 138)

H-INDEX

60
(FIVE YEARS 9)

2024 ◽  
Vol 84 ◽  
Author(s):  
M. F. R. Dias ◽  
F. L. L. Oliveira ◽  
V. S. Pontes ◽  
M. L. Silva

Abstract In recent years, the development of high-throughput technologies for obtaining sequence data leveraged the possibility of analysis of protein data in silico. However, when it comes to viral polyprotein interaction studies, there is a gap in the representation of those proteins, given their size and length. The prepare for studies using state-of-the-art techniques such as Machine Learning, a good representation of such proteins is a must. We present an alternative to this problem, implementing a fragmentation and modeling protocol to prepare those polyproteins in the form of peptide fragments. Such procedure is made by several scripts, implemented together on the workflow we call PolyPRep, a tool written in Python script and available in GitHub. This software is freely available only for noncommercial users.


2022 ◽  
Author(s):  
Mirren Charnley ◽  
Saba Islam ◽  
Guneet Bindra ◽  
Jeremy Engwirda ◽  
Julian Ratcliffe ◽  
...  

Abstract COVID-19 is primarily known as a respiratory disease caused by the virus SARS-CoV-2. However, neurological symptoms such as memory loss, sensory confusion, cognitive and psychiatric issues, severe headaches, and even stroke are reported in as many as 30% of cases and can persist even after the infection is over (so-called ‘long COVID’). These neurological symptoms are thought to be caused by brain inflammation, caused by the virus infecting the central nervous system of COVID-19 patients, however we still don’t understand the molecular mechanisms that trigger these symptoms. The neurological effects of COVID-19 share many similarities to neurodegenerative diseases such as Alzheimer’s and Parkinson’s in which the presence of cytotoxic protein-based amyloid aggregates is a common etiological feature. Following the hypothesis that some neurological symptoms of COVID-19 may also follow an amyloid etiology we performed a bioinformatic scan of the SARS-CoV-2 proteome, detecting peptide fragments that were predicted to be highly amyloidogenic. We selected two of these peptides from the open reading frame 6 (ORF6) and open reading frame 10 (ORF10) proteins. The amyloidogenic virus-derived proteins studied in this work did not include spike (S) protein or any other proteins that have been modified to function as antigens in any current vaccines. We discovered that these ORF protein fragments rapidly self-assemble into amyloid aggregates. Furthermore, these amyloid assemblies were shown to be highly toxic to a neuronal cell line. We introduce and support the idea that cytotoxic amyloid aggregates of SARS-CoV-2 proteins are causing some of the neurological symptoms commonly found in COVID-19 and contributing to long COVID.


Author(s):  
Igor Maciel Souza‐Silva ◽  
Cristiane Amorim Paula ◽  
Lucas Bolais‐Ramos ◽  
Anderson Kenedy Santos ◽  
Filipe Alex Silva ◽  
...  

Vaccines ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 65
Author(s):  
Xin Zhang ◽  
Shuli Sang ◽  
Qing Guan ◽  
Haoxia Tao ◽  
Yanchun Wang ◽  
...  

Helicobacter pylori (H. pylori), heat-shock protein A (HspA), is a bacterial heat-shock chaperone that serves as a nickel ion scavenging protein. Ni2+ is an important co-factor required for the maturation and enzymatic activity of H. pylori urease and [NiFe] hydrogenase, both of which are key virulence factors for pathogen survival and colonization. HspA is an important target molecule for the diagnosis, treatment, and immune prevention of H. pylori. In this work, HspA was truncated into five fragments to determine the location of an antigen immunodominant peptide. A series of overlapping, truncated 11-amino-acid peptides in immunodominant peptide fragments were synthesized chemically and screened by ELISA. The immunogenicity and antigenicity of the screened epitope peptides were verified by ELISA, Western blot, and lymphocyte proliferation tests. Two novel B-cell epitopes were identified, covering amino acids 2–31 of HspA, which are HP11 (2–12; KFQPLGERVLV) and HP19 (18–28; ENKTSSGIIIP). The antiserum obtained from HP11-KLH and HP19-KLH immunized mice can bind to naive HspA in H. pylori SS2000, rHspA expressed in E. coli, and the corresponding GST fusion peptide. Among HspA seropositive persons, the seropositive rates of HP11 and HP19 were 21.4% and 33.3%, respectively. Both of the B-cell epitopes of HspA are highly conserved epitopes with good antigenicity and immunogenicity.


2021 ◽  
Author(s):  
Isak Johansson-Åkhe ◽  
Björn Wallner

Motivation: Interactions between peptide fragments and protein receptors are vital to cell function yet difficult to experimentally determine the structural details of. As such, many computational methods have been developed to aid in peptide-protein docking or structure prediction. One such method is Rosetta FlexPepDock which consistently refines coarse peptide-protein models into sub-Ångström precision using Monte-Carlo simulations and statistical potentials. Deep learning has recently seen increased use in protein structure prediction, with graph neural network seeing use in protein model quality assessment. Results: Here, we introduce a graph neural network, InterPepScore, as an additional scoring term to complement and improve the Rosetta FlexPepDock refinement protocol. InterPepScore is trained on simulation trajectories from FlexPepDock refinement starting from thousands of peptide-protein complexes generated by a wide variety of docking schemes. The addition of InterPepScore into the refinement protocol consistently improves the quality of models created, and on an independent benchmark on 109 peptide-protein complexes its inclusion results in an increase in the number of complexes for which the top-scoring model had a DockQ-score of 0.49 (Medium quality) or better from 14.8% to 26.1%.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jammy Mariotton ◽  
Anette Sams ◽  
Emmanuel Cohen ◽  
Alexis Sennepin ◽  
Gabriel Siracusano ◽  
...  

BackgroundThe vasodilator neuropeptide calcitonin gene-related peptide (CGRP) plays both detrimental and protective roles in different pathologies. CGRP is also an essential component of the neuro-immune dialogue between nociceptors and mucosal immune cells. We previously discovered that CGRP is endowed with anti-viral activity and strongly inhibits human immunodeficiency virus type 1 (HIV-1) infection, by suppressing Langerhans cells (LCs)-mediated HIV-1 trans-infection in-vitro and mucosal HIV-1 transmission ex-vivo. This inhibition is mediated via activation of the CGRP receptor non-canonical NFκB/STAT4 signaling pathway that induces a variety of cooperative mechanisms. These include CGRP-mediated increase in the expression of the LC-specific pathogen recognition C-type lectin langerin and decrease in LC-T-cell conjugates formation. The clinical utility of CGRP and modalities of CGRP receptor activation, for inhibition of mucosal HIV-1 transmission, remain elusive.MethodsWe tested the capacity of CGRP to inhibit HIV-1 infection in-vivo in humanized mice. We further compared the anti-HIV-1 activities of full-length native CGRP, its metabolically stable analogue SAX, and several CGRP peptide fragments containing its binding C-terminal and activating N-terminal regions. These agonists were evaluated for their capacity to inhibit LCs-mediated HIV-1 trans-infection in-vitro and mucosal HIV-1 transmission in human mucosal tissues ex-vivo.ResultsA single CGRP intravaginal topical treatment of humanized mice, followed by HIV-1 vaginal challenge, transiently restricts the increase in HIV-1 plasma viral loads but maintains long-lasting higher CD4+ T-cell counts. Similarly to CGRP, SAX inhibits LCs-mediated HIV-1 trans-infection in-vitro, but with lower potency. This inhibition is mediated via CGRP receptor activation, leading to increased expression of both langerin and STAT4 in LCs. In contrast, several N-terminal and N+C-terminal bivalent CGRP peptide fragments fail to increase langerin and STAT4, and accordingly lack anti-HIV-1 activities. Finally, like CGRP, treatment of human inner foreskin tissue explants with SAX, followed by polarized inoculation with cell-associated HIV-1, completely blocks formation of LC-T-cell conjugates and HIV-1 infection of T-cells.ConclusionOur results show that CGRP receptor activation by full-length CGRP or SAX is required for efficient inhibition of LCs-mediated mucosal HIV-1 transmission. These findings suggest that formulations containing CGRP, SAX and/or their optimized agonists/analogues could be harnessed for HIV-1 prevention.


2021 ◽  
Author(s):  
Saba Islam ◽  
Mirren Charnley ◽  
Guneet Bindra ◽  
Julian Ratcliffe ◽  
Jiangtao Zhou ◽  
...  

COVID-19 is primarily known as a respiratory disease caused by the virus SARS-CoV-2. However, neurological symptoms such as memory loss, sensory confusion, cognitive and psychiatric issues, severe headaches, and even stroke are reported in as many as 30% of cases and can persist even after the infection is over (so-called 'long COVID'). These neurological symptoms are thought to be caused by brain inflammation, triggered by the virus infecting the central nervous system of COVID-19 patients, however we still don't fully understand the mechanisms for these symptoms. The neurological effects of COVID-19 share many similarities to neurodegenerative diseases such as Alzheimer's and Parkinson's in which the presence of cytotoxic protein-based amyloid aggregates is a common etiological feature. Following the hypothesis that some neurological symptoms of COVID-19 may also follow an amyloid etiology we performed a bioinformatic scan of the SARS-CoV-2 proteome, detecting peptide fragments that were predicted to be highly amyloidogenic. We selected two of these peptides and discovered that they do rapidly self-assemble into amyloid. Furthermore, these amyloid assemblies were shown to be highly toxic to a neuronal cell line. We introduce and support the idea that cytotoxic amyloid aggregates of SARS-CoV-2 proteins are causing some of the neurological symptoms commonly found in COVID-19 and contributing to long COVID, especially those symptoms which are novel to long COVID in contrast to other post-viral syndromes.


2021 ◽  
Author(s):  
Lars Kolbowski ◽  
Swantje Lenz ◽  
Lutz Fischer ◽  
Ludwig R Sinn ◽  
Francis J O'Reilly ◽  
...  

Proteome-wide crosslinking mass spectrometry studies have coincided with the advent of MS-cleavable crosslinkers that can reveal the individual masses of the two crosslinked peptides. However, recently such studies have also been published with non-cleavable crosslinkers suggesting that MS-cleavability is not essential. We therefore examined in detail the advantages and disadvantages of using the most popular MS-cleavable crosslinker, DSSO. Indeed, DSSO gave rise to signature peptide fragments with a distinct mass difference (doublet) for nearly all identified crosslinked peptides. Surprisingly, we could show that it was not these peptide masses that proved the main advantage of MS-cleavability of the crosslinker, but improved peptide backbone fragmentation that allowed for more confident peptide identification. We also show that the more intricate MS3-based data acquisition approaches lack sensitivity and specificity, causing them to be outperformed by the simpler and faster stepped HCD method. This understanding will guide future developments and applications of proteome-wide crosslinking mass spectrometry.


2021 ◽  
Author(s):  
Jenniffer Cruz ◽  
Miguel Orlando Suárez-Barrera ◽  
Paola Rondón-Villarreal ◽  
Andrés Olarte-Diaz ◽  
Fanny Guzmán ◽  
...  

Parasporin-2Aa1 (PS2Aa1) is a toxic protein of 37 KDa (30 KDa, activated form produced by proteolysis) that was shown to be cytotoxic against specific human cancer cells, although its mechanism of action has not been elucidated yet. In order to study the role of some native peptide fragments of proteins on anticancer activity, here we investigated the cytotoxic effect of peptide fragments from domain-1 of PS2Aa1 and one of the loops present in the binding region of the virus spike protein from Alphacoronavirus (HCoV-229E), the latter according to scientific reports, who showed interaction with the human APN (h-APN) receptor, evidence corroborated through computational simulations, and thus being possible active against colon cancer cells. Peptides namely P264-G274, Loop1-PS2Aa, and Loop2-PS2Aa were synthesized using the Fmoc solid-phase synthesis and characterized by mass spectrometry (MS). Additionally, one region from loop 1 of HCoV-229E, Loop1-HCoV-229E, was also synthesized and characterized. The A4W-GGN5 anticancer peptide and 5-fluorouracil (5-FU) were taken as a control in all experiments. Circular dichroism revealed an α-helix structure for the peptides derived from PS2Aa1 (P264-G274, Loop1-PS2Aa, and Loop2-PS2Aa) and β-laminar structure for the peptide derived from Alphacoronavirus spike protein Loop1-HCoV-229E. Peptides showed a hemolysis percentage of less than 20% at 100 µM concentration. Besides, peptides exhibited stronger anticancer activity against SW480 and SW620 cells after exposure for 48 h. Likewise, these compounds showed significantly lower toxicity against normal cells CHO-K1. The results suggest that native peptide fragments from Ps2Aa1 may be optimized as a novel potential cancer –therapeutic agents.


Author(s):  
Michael Notaras ◽  
Aiman Lodhi ◽  
Friederike Dündar ◽  
Paul Collier ◽  
Nicole M. Sayles ◽  
...  

AbstractDue to an inability to ethically access developing human brain tissue as well as identify prospective cases, early-arising neurodevelopmental and cell-specific signatures of Schizophrenia (Scz) have remained unknown and thus undefined. To overcome these challenges, we utilized patient-derived induced pluripotent stem cells (iPSCs) to generate 3D cerebral organoids to model neuropathology of Scz during this critical period. We discovered that Scz organoids exhibited ventricular neuropathology resulting in altered progenitor survival and disrupted neurogenesis. This ultimately yielded fewer neurons within developing cortical fields of Scz organoids. Single-cell sequencing revealed that Scz progenitors were specifically depleted of neuronal programming factors leading to a remodeling of cell-lineages, altered differentiation trajectories, and distorted cortical cell-type diversity. While Scz organoids were similar in their macromolecular diversity to organoids generated from healthy controls (Ctrls), four GWAS factors (PTN, COMT, PLCL1, and PODXL) and peptide fragments belonging to the POU-domain transcription factor family (e.g., POU3F2/BRN2) were altered. This revealed that Scz organoids principally differed not in their proteomic diversity, but specifically in their total quantity of disease and neurodevelopmental factors at the molecular level. Single-cell sequencing subsequently identified cell-type specific alterations in neuronal programming factors as well as a developmental switch in neurotrophic growth factor expression, indicating that Scz neuropathology can be encoded on a cell-type-by-cell-type basis. Furthermore, single-cell sequencing also specifically replicated the depletion of BRN2 (POU3F2) and PTN in both Scz progenitors and neurons. Subsequently, in two mechanistic rescue experiments we identified that the transcription factor BRN2 and growth factor PTN operate as mechanistic substrates of neurogenesis and cellular survival, respectively, in Scz organoids. Collectively, our work suggests that multiple mechanisms of Scz exist in patient-derived organoids, and that these disparate mechanisms converge upon primordial brain developmental pathways such as neuronal differentiation, survival, and growth factor support, which may amalgamate to elevate intrinsic risk of Scz.


Sign in / Sign up

Export Citation Format

Share Document