scholarly journals Automated Positioning of Anchors for Personal Fall Arrest Systems for Steep-Sloped Roofs

Buildings ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 10
Author(s):  
Azin Heidari ◽  
Svetlana Olbina ◽  
Scott Glick

Falls account for about one-third of all construction fatalities with most fatalities in the roofing trade. Even though a personal fall arrest system (PFAS) is required for fall protection, proper placement of PFAS anchor points is an issue evidenced by the high number of fatalities caused by incorrect anchor positioning. The research goal was to proof the concept of optimizing the location of the PFAS anchor points on steep-sloped roofs. This goal was achieved by: (1) Developing an algorithm for converting the required local jurisdiction construction regulations and standards for PFAS anchor positioning into machine-readable rules; and (2) Developing and validating an algorithm for optimizing the location of PFAS anchor points. The K-Nearest Neighbor Search (KNNS) optimization algorithm was selected in this research and was implemented into a standalone computer tool using Python programming language. The tool calculates the potential anchor locations that satisfy the fall clearance and swing hazard requirements and then displays the anchor locations both graphically and numerically. The optimization algorithm was validated using the K-fold Cross-Validation method, which proved the algorithm was adequately accurate and consistent. The research contribution is the proof of the concept that the development of an optimization algorithm and automated field-level tool for optimal selection of PFAS anchor points is possible, further research and refinement could help steep-sloped roofing companies improve their safety practices.

IEEE Access ◽  
2018 ◽  
Vol 6 ◽  
pp. 72939-72951
Author(s):  
Mingwei Cao ◽  
Wei Jia ◽  
Zhihan Lv ◽  
Wenjun Xie ◽  
Liping Zheng ◽  
...  

2014 ◽  
Vol 10 (4) ◽  
pp. 385-405 ◽  
Author(s):  
Yuka Komai ◽  
Yuya Sasaki ◽  
Takahiro Hara ◽  
Shojiro Nishio

In a kNN query processing method, it is important to appropriately estimate the range that includes kNNs. While the range could be estimated based on the node density in the entire network, it is not always appropriate because the density of nodes in the network is not uniform. In this paper, we propose two kNN query processing methods in MANETs where the density of nodes is ununiform; the One-Hop (OH) method and the Query Log (QL) method. In the OH method, the nearest node from the point specified by the query acquires its neighbors' location and then determines the size of a circle region (the estimated kNN circle) which includes kNNs with high probability. In the QL method, a node which relays a reply of a kNN query stores the information on the query result for future queries.


Sign in / Sign up

Export Citation Format

Share Document