fall protection
Recently Published Documents


TOTAL DOCUMENTS

137
(FIVE YEARS 34)

H-INDEX

9
(FIVE YEARS 2)

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ebru Yazgan ◽  
Necmettin Firat Ozkan ◽  
Berna Haktanirlar Ulutas

Purpose Aircraft maintenance technician (AMT) is the most critical profession in the aircraft maintenance system. The tasks of a licensed AMT require expertise and involve repetitive physical tasks such as tightening or loosening aircraft parts, carrying or removing parts during long working hours under time pressure and day/night shifts. This study aims to attract attention to the difficult working conditions of AMTs and identify the body parts that are at risk of musculoskeletal disorder (MSD). Design/methodology/approach A questionnaire is developed by the authors to gather demographic information, use of hand tools, equipment, use of fall protection, manual material handling (lifting, pushing, pulling), load weight, environmental factors, and MSD discomfort level perceptions. The questionnaire is applied to 150 AMTs during six months period, and the obtained data are analyzed by sequential ordinal logistic regression (OLR) models. Findings The ORL results confirm that the use of equipment (lift platform, scissors lift), safety belt attached to the platform, manual material handling, environmental factors (humidity, vibration and illumination) and resting periods have a significant effect on MSD risks. On the contrary, age, experience level, use of small hand tools, temperature and noise are not identified as statistically significant. Originality/value The study is original for it considers the working conditions and perceived discomfort levels of AMTs. A questionnaire is introduced to assess the consequences of the use of tools, equipment, fall protection equipment, environmental conditions and work organization on various body parts (neck, shoulder, elbow, back, lower back, wrist-hand, hip, knee, and ankle-feet), and strain level is identified. The study contributes to the theoretical aircraft maintenance literature and managers in practice.


2021 ◽  
Author(s):  
Yunkung Ning ◽  
Yanan Diao ◽  
Guanghui Wang ◽  
Nan Lou ◽  
Guanglin Li ◽  
...  
Keyword(s):  

Author(s):  
Melissa Piatkowski ◽  
Ellen Taylor ◽  
Bob Wong ◽  
Dorothy Taylor ◽  
K. Bo Foreman ◽  
...  

Despite decades of research into patient falls, there is a dearth of evidence about how the design of patient rooms influences falls. Our multi-year study aims to better understand how patient room design can increase stability during ambulation, serving as a fall protection strategy for frail and/or elderly patients. The aim of this portion of the study was to ascertain the architect’s perspective on designing a room to mitigate the risk of falls, as well as to evaluate the face validity of a predictive algorithm to assess risk in room design using the input of a design advisory council (AC). The purpose of this paper is to provide insight into the design process and decision-making for patient rooms; summarize the impressions of industry experts about the configurations and layout of the patient rooms tested in a preliminary augmented reality model; establish the face validity of modeled heat maps depicting risk; and report the results of a pre-meeting and post-meeting survey of expert opinions. Feedback was coded using human factors/ergonomic (HF/E) design principles, and the findings will be used to guide further development of an “optimal” prototype room for human subject testing. The results confirm the challenges that architects face as they balance competing priorities and reveal how a participatory process focusing on preventing falls can shift assumptions about design strategies, especially subtle changes (e.g., toilet orientation).


2021 ◽  
Author(s):  
Robert L. Dahlstrom

Abstract The use of aerial robotic systems that physically contact oil and gas structural assets to obtain measurement data in offshore and marine environments carries unique challenges and operational variables. The objectives of this paper are to demonstrate, with examples, how these aerial robotic systems afford safer, cheaper, and better nondestructive testing (NDT) measurement collection methodology and allow more robust insight into assets conditions than the slower, less safe, and more expensive manual method. To take NDT measurements such as Ultrasonic Wall Thickness (UT) Measurements at height, currently one needs to utilize a lift, ladders or other solutions to reach areas on certain assets. This can be both dangerous, due to the possibility of falls, and time consuming. Utilizing an aerial robotics platform for contact based (not visual) NDT measurements such as Ultrasonic Thickness (UT) allows workers to remain safely on the ground. Drones, with robotic arms, have the potential to improve inspection, testing and data collection. This paper explores an aerial robotic system that flies up to a structure with a metal sub-straight, then under full autonomous software control, touches a UT measurement probe to the target and records the measurement data compliant with American Petrolium Institute (API) and other standards. The use of aerial robotics systems for NDT is still a new and novel application utilizing existing technologies such as electronic measurement readers, drones, etc. with a system of complex integrations that allows for a better application of science. Aerial Robotic NDT systems have the potential to improve the inspection, testing and data collection aspects of coated and uncoated assets, in part, by making the NDT measurement process easier and safer thus allowing for more frequent measurements and/or a larger quantity of measurement samples. When possible, working at heights should be eliminated as part the hierarchy of fall protection stipulated by both OSHA and ANSI. For this reason alone, the use of aerial robotic systems is important now and in the immediate future Oil & Gas infrastructure, including Offshore. This paper intends to provide readers an awareness of this new technology as well as provide information about its efficacy, limitations and operational requirements.


2021 ◽  
Vol 104 (3) ◽  
pp. 003685042110396
Author(s):  
Pinpin Qin ◽  
Xiaolei Hou ◽  
Shaokun Zhang ◽  
Shunfeng Zhang ◽  
Junming Huang

Introduction: Although the fall protection net installed at the end of the truck escape ramp has a protective effect on trucks and drivers, but lacks sufficient theoretical basis and verification method. Objectives: The primary objective of this paper was to design a fall protection net that meets the regulations and research its protection performance. Methods: The finite-element method was used to design the overall size, material, mesh length, mesh type, shape, and supporting structure of the fall protection net installed at the end of truck escape ramp, then dummy and truck models were used to impact the fall protection net to verify the rationality of the design. After the design completed, the truck model was used to impact the fall protection net twice to research the cumulative protection performance. Results: A fall protection net with a width of 6000 mm, a span of 6000 mm, a depth of 5196 mm, a mesh length of 150 mm, a mesh type of diamond mesh, a shape of 60-degree V-shaped, a supporting structure of steel pipe supporting has a better effect on energy absorption and protection. Within the two consecutive impacts, the residual plastic deformation and stress of the fall protection net generated in the first impact severely affect the protection performance in the second impact. Conclusion: It is feasible to use the finite-element method to design and research the fall prevention net installed at the end of the truck escape ramp, and the fall protection net can indeed protect the trucks and drivers, and it should be inspected and maintained after impact to ensure the protective performance in subsequent use.


Author(s):  
Olanrewaju AbdulLateef ◽  
Xi Xuan Law ◽  
Christoper Preece Nigel

The impact of construction related accidents to the individual, the construction sector and the economy is huge. In Malaysia about 6000 workers’ related accidents are reported annually. Scaffold accidents are one of the major causes of injury and death on Malaysian construction sites. This research investigated the scaffolding accidents during maintenance work in the Malaysian construction industry. This study provides answers to two questions: 1) what are the causes of scaffolding accidents during maintenance work? and 2) what are the possible measures to reduce scaffolding accidents during maintenance work? Primary data were collected through survey interview techniques involving 10 maintenance construction stakeholders. The research revealed that the scaffold accidents that occurred during maintenance works are due to lack of a fall protection system, lack of proper baseplate, user behavior, lack of proper guardrail and weather conditions. To reduce scaffolding accidents during maintenance works adequate poor cross bracing, safety netting, jack base, pin lock and adequate inspection of the scaffolding during operations are required. Implicit in the findings of this research is that scaffold accidents are due to behavioral issues of the sites operative and contractors’ organizations as whole. The findings provide feedback and feed for-ward information and knowledge to construction site operatives.


2021 ◽  
Vol 11 (11) ◽  
pp. 5296
Author(s):  
Haifeng Jin ◽  
Paul M. Goodrum

Construction falls are a leading cause of fatalities in almost every construction industry around the globe, and fall protection systems are the key measures to ensure the safety of labor crews. This study develops a fuzzy multi-criteria decision-making model integrating analytical hierarchy process, fuzzy set theory and Technique for Order Preference by Similarity to Ideal Solution approach to analyze the overall performance of various fall protection plans for construction projects, which focuses on evaluation and selection of the appropriate protection plan considering the most influential safety, productivity, and economy factors. Results show that the optimal plan can be effectively identified and determined among all potential alternatives. Besides, the model overcomes the shortcoming of weight value uncertainty and ambiguous decision information through membership function calculations. As a result, it provides guidance for the improvement of construction performance, intending to minimize fall risks, improve labor productivity, and save economical cost on the jobsites.


Author(s):  
Rajendra B. Sadafale ◽  
Rahul V. Joshi ◽  
Aniket S. Hissal ◽  
Rohit M. Bachchhe

An Elevator or lift is a type of vertical cable transportation machine i.e. car that moves people or fright between floors, levels of building. Elevators are powered by electric motor that drive traction cables and counterweight systems. In today’s stressful life, everyone needs an easy and convenient way to reach their goals, but there are many obstacles in the easy path. The elevator is also a part of same concept, we choose the elevator route to get our place early, but how safe is the elevator? Of course there is a lot of risk involved. The elevator thread can be broken and falls are among the most common cause of serious injuries and deaths. This paper explains about the fall protection, backup system, operation of elevator using IoT.


Sign in / Sign up

Export Citation Format

Share Document