scholarly journals Concordance of Chronotype Categorisations Based on Dim Light Melatonin Onset, the Morningness-Eveningness Questionnaire, and the Munich Chronotype Questionnaire

2021 ◽  
Vol 3 (2) ◽  
pp. 342-350
Author(s):  
Andrew M. Reiter ◽  
Charli Sargent ◽  
Gregory D. Roach

Chronotype reflects circadian timing and can be determined from biological markers (e.g., dim light melatonin onset; DLMO), or questionnaires (e.g., Morningness-Eveningness Questionnaire; MEQ, or Munich Chronotype Questionnaire; MCTQ). The study’s aim was to quantify concordance between chronotype categorisations based on these measures. A total of 72 (36f) young, healthy adults completed the MEQ and MCTQ and provided saliva samples hourly in dim light during the evening in a laboratory. The corrected midpoint of sleep on free days (MSFsc) was derived from MCTQ, and tertile splits were used to define early, intermediate and late DLMO-CT, MEQ-CT and MSFsc-CT chronotype categories. DLMO correlated with MEQ score (r = −0.25, p = 0.035) and MSFsc (r = 0.32, p = 0.015). For early, intermediate and late DLMO-CT categories, mean(SD) DLMO were 20:25(0:46), 21:33(0:10) and 23:03(0:53). For early, intermediate and late MEQ-CT categories, mean(SD) MEQ scores were 60.5(5.3), 51.4(2.9) and 40.8 (5.0). For early, intermediate and late MSFsc-CT categories, mean(SD) MSFsc were 03:23(0:34), 04:37(0:12) and 05:55(0:48). Low concordance of categorisations between DLMO-CT and MEQ-CT (37%), and between DLMO-CT and MSFsc-CT (37%), suggests chronotype categorisations depend on the measure used. To enable valid comparisons with previous results and reduce the likelihood of misleading conclusions, researchers should select measures and statistical techniques appropriate to the construct of interest and research question.

2003 ◽  
Vol 1 (2) ◽  
pp. 102-114 ◽  
Author(s):  
Helen J. Burgess ◽  
Natasha Savic ◽  
Tracey Sletten ◽  
Gregory Roach ◽  
Saul S. Gilbert ◽  
...  

2021 ◽  
Vol 2 (3) ◽  
pp. 1-15
Author(s):  
Cheng Wan ◽  
Andrew W. Mchill ◽  
Elizabeth B. Klerman ◽  
Akane Sano

Circadian rhythms influence multiple essential biological activities, including sleep, performance, and mood. The dim light melatonin onset (DLMO) is the gold standard for measuring human circadian phase (i.e., timing). The collection of DLMO is expensive and time consuming since multiple saliva or blood samples are required overnight in special conditions, and the samples must then be assayed for melatonin. Recently, several computational approaches have been designed for estimating DLMO. These methods collect daily sampled data (e.g., sleep onset/offset times) or frequently sampled data (e.g., light exposure/skin temperature/physical activity collected every minute) to train learning models for estimating DLMO. One limitation of these studies is that they only leverage one time-scale data. We propose a two-step framework for estimating DLMO using data from both time scales. The first step summarizes data from before the current day, whereas the second step combines this summary with frequently sampled data of the current day. We evaluate three moving average models that input sleep timing data as the first step and use recurrent neural network models as the second step. The results using data from 207 undergraduates show that our two-step model with two time-scale features has statistically significantly lower root-mean-square errors than models that use either daily sampled data or frequently sampled data.


2009 ◽  
Vol 10 (5) ◽  
pp. 549-555 ◽  
Author(s):  
Shadab A. Rahman ◽  
Leonid Kayumov ◽  
Ekaterina A. Tchmoutina ◽  
Colin M. Shapiro

1989 ◽  
Vol 6 (1) ◽  
pp. 93-102 ◽  
Author(s):  
Alfred J. Lewy ◽  
Robert L. Sack

2013 ◽  
Vol 14 ◽  
pp. e79
Author(s):  
M. Bonmati-Carrion ◽  
B. Middleton ◽  
V. Revell ◽  
D. Skene ◽  
A. Rol ◽  
...  

SLEEP ◽  
2020 ◽  
Vol 43 (Supplement_1) ◽  
pp. A84-A84
Author(s):  
G Hisler ◽  
S Pedersen ◽  
D Clark ◽  
S Rothenberger ◽  
B Hasler

Abstract Introduction People with later circadian timing tend to consume more alcohol, potentially due to altered rhythms in when and how much they crave alcohol throughout the day. However, whether circadian factors play a role in alcohol craving has received scant attention. Here, we investigated if the daily rhythm of alcohol craving varied by circadian timing in two independent studies of late adolescent and young adult drinkers. Methods In Study 1, 32 participants (18–22 years of age; 61% female; 69% White) completed momentary reports of alcohol craving five times a day for 14 days. Participants wore wrist actigraphs and completed two in-lab assessments of dim light melatonin onset (DLMO). Average actigraphically-assessed midpoint of sleep on weekends and average DLMO were used as indicators of circadian timing. In Study 2, 231 participants (21–35 years of age; 28% female; 71% White) completed momentary reports of alcohol craving six times a day for 10 days. Average midpoint of self-reported time-in-bed on weekends was used to estimate circadian timing. Results Multilevel cosinor analysis revealed a 24-hour daily rhythm in alcohol craving which was moderated by circadian timing in both studies (p’s<0.05). In both Study 1 and 2, people with later circadian timing had a later timed peak of craving. In Study 1, but not Study 2, later circadian timing predicted a blunted amplitude in craving. Conclusion Findings support a daily rhythm in craving that varies by individual differences in circadian timing. Because craving is an important predictor of future alcohol use, the findings implicate circadian factors as a useful area to advance alcohol research and potentially improve interventions. Support R21AA023209; R01DA044143; K01AA021135; ABMRF/The Foundation for Alcohol Research.


SLEEP ◽  
2020 ◽  
Vol 43 (Supplement_1) ◽  
pp. A16-A16
Author(s):  
L Swanson ◽  
J Arnedt ◽  
K DuBuc ◽  
T de Sibour ◽  
H Burgess

Abstract Introduction Delayed sleep-wake phase disorder (DSWPD) is common, debilitating, and challenging to treat. In an ongoing randomized trial, we are comparing exogenous melatonin treatment outcomes in DSWPD participants for whom dim light melatonin onset (DLMO) is measured objectively vs. estimated. Methods Thus far, 13 participants (27±6 years old, 67% female) have completed a randomized, controlled, double-blind 4-week trial of 0.5 mg of exogenous melatonin timed to either 3 h before measured DLMO (M-DLMO, n = 6) or 3 h before DLMO estimated at 2 h before average sleep onset time based on at least 7 days of wrist actigraphy and sleep diary (E-DLMO, n = 7). All participants met International Classification of Sleep Disorders-3 diagnostic criteria for DSWPD and were otherwise healthy. Participants completed 4 weekly treatment sessions with a blinded psychologist; time of melatonin administration and bed-rise schedule were advanced up to 1 h/week. A validated home saliva collection kit measured DLMO in all participants. Between-group t-tests and Hedges’ g effect sizes (ES) were calculated at post-treatment for the following outcomes: DLMO; Pittsburgh Sleep Quality Index (PSQI) global score; Morningness-Eveningness Questionnaire (MEQ); and the actigraphy parameters sleep efficiency (SE) and clock time of sleep onset and offset. A paired-sample t-test compared the measured vs. estimated DLMO at baseline. Results The M-DLMO group had a 65±88 mins DLMO advance vs. 27±30 mins in the E-DLMO group (ES=0.51 p=.381). PSQI scores were similar between groups (M-DLMO=6.67±2.06, E-DLMO=7.1± 1.57, ES=-0.24, p=.646), as were MEQ scores (M-DLMO=43±4.98, E-DLMO=48±12.72, ES=-0.47, p=.387). Sleep onset time (M-DLMO=0:32±1:02, E-DLMO=0:31±1:38, ES=0.01, p=.98) and offset time (M-DLMO=8:05±1:03, E-DLMO=8:08±2:14, ES=-0.02, p=.968) were similar between the groups, although sleep was more efficient in M-DLMO vs. E-DLMO (84%±3% vs. 76%±10%, ES=0.94, p=.096). On average, baseline measured DLMO occurred 123±83 mins earlier than estimated DLMO (p=.001). Conclusion We are continuing to enroll participants in this trial. Preliminary results suggest some potential benefit of measuring the DLMO, but results will need to be clarified in a larger sample. Support American Sleep Medicine Foundation Strategic Research Award


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Bruno Jacson Martynhak ◽  
Alexandra L. Hogben ◽  
Panos Zanos ◽  
Polymnia Georgiou ◽  
Roberto Andreatini ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document