scholarly journals Calculation of the Acoustic Spectrum of a Cylindrical Vortex in Viscous Heat-Conducting Gas Based on the Navier–Stokes Equations

Computation ◽  
2016 ◽  
Vol 4 (3) ◽  
pp. 32
Author(s):  
Tatiana Petrova ◽  
Fedor Shugaev
2015 ◽  
pp. 87-93
Author(s):  
E. M. Sorokina ◽  
A. G. Obukhov

To investigate the convective flows of polytropic gas a complete system of Navier - Stokes equations is consid-ered. As the initial and boundary conditions the specific ratios are offered. The proposed initial and boundary condi-tions realization is carried out at construction of the numerical solution of the complete system of Navier - Stokes equations for modeling the unsteady state three-dimensional convection flows of the compressible viscous heat-conducting gas in the isolated cubic area. Three components of the velocity vector are calculated for the initial stage of the convective flow. It is shown that the velocity components are complex and depend essentially on the heating shape, height and time.


1966 ◽  
Vol 25 (4) ◽  
pp. 705-718 ◽  
Author(s):  
John P. Moran ◽  
S. F. Shen

The piston problem for a viscous heat-conducting gas is studied under the assumption that the piston Mach number ε is small. The linearized Navier–Stokes equations are found to be valid up to times of the order of ε−2mean free times after the piston is set in motion, while at large times the solution is governed by Burgers's equation. Boundary conditions for the large-time solution are supplied by the matching principle of the method of inner and outer expansions, which is also used to construct a composite solution valid both for small and for large times.


Author(s):  
Zhilei Liang

The large time behavior is considered for the solutions of the Navier-Stokes equations for one-dimensional viscous polytropic ideal gas in unbounded domains. Using the local anti-derivatives functions technique, we obtain the power type decay estimates for the generalized solutions as time goes to infinity


Sign in / Sign up

Export Citation Format

Share Document