scholarly journals Improved Adaptive Successive Cancellation List Decoding of Polar Codes

Entropy ◽  
2019 ◽  
Vol 21 (9) ◽  
pp. 899
Author(s):  
Xiumin Wang ◽  
Jinlong He ◽  
Jun Li ◽  
Zhuoting Wu ◽  
Liang Shan ◽  
...  

Although the adaptive successive cancellation list (AD-SCL) algorithm and the segmented-CRC adaptive successive cancellation list (SCAD-SCL) algorithm based on the cyclic redundancy check (CRC) can greatly reduce the computational complexity of the successive cancellation list (SCL) algorithm, these two algorithms discard the previous decoding result and re-decode by increasing L, where L is the size of list. When CRC fails, these two algorithms waste useful information from the previous decoding. In this paper, a simplified adaptive successive cancellation list (SAD-SCL) is proposed. Before the re-decoding of updating value L each time, SAD-SCL uses the existing log likelihood ratio (LLR) information to locate the range of burst error bits, and then re-decoding starts at the incorrect bit with the smallest index in this range. Moreover, when the segmented information sequence cannot get the correct result of decoding, the SAD-SCL algorithm uses SC decoding to complete the decoding of the subsequent segmentation information sequence. Furthermore, its decoding performance is almost the same as that of the subsequent segmentation information sequence using the AD-SCL algorithm. The simulation results show that the SAD-SCL algorithm has lower computational complexity than AD-SCL and SCAD-SCL with negligible loss of performance.


Author(s):  
Walled Khalid Abdulwahab ◽  
Abdulkareem Abdulrahman Kadhim

Polar codes have already been adopted in 5G systems to improve error performance. Successive cancellation list (SCL) decoding is usually used at the decoder and involves lengthy processing. Therefore, different methods have been developed to reduce an SCL decoder’s complexity. In this paper, a reduced path successive cancellation list (RP-SCL) decoder is presented to reduce this complexity, where some decoding paths are pruned. The pruning is achieved by using three different thresholds: two for the path metric and one for the pruning depth in the decoding tree. An optimization procedure is considered to determine the optimum settings for these thresholds. The simulation tests are carried out over models of an additive white Gaussian noise channel and a fading channel by using 5G environments. The results reveal that the proposed RP-SCL decoder provides the complexity reduction in terms of the average number of processed paths at high SNR. Additionally, the computational complexity and the memory requirements decrease.



2019 ◽  
Vol 23 (10) ◽  
pp. 1757-1760
Author(s):  
Jiahao Wang ◽  
Zhenyu Hu ◽  
Ning An ◽  
Dunfan Ye


2019 ◽  
pp. 1-1 ◽  
Author(s):  
Xiumin Wang ◽  
Ting Wang ◽  
Jun Li ◽  
Liang Shan ◽  
Haiyan Cao ◽  
...  




IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 96955-96962
Author(s):  
Kyungpil Lee ◽  
In-Cheol Park


2017 ◽  
Vol 14 (18) ◽  
pp. 20170735-20170735 ◽  
Author(s):  
Kun Wang ◽  
Li Li ◽  
Feng Han ◽  
Fan Feng ◽  
Jun Lin ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document