scholarly journals Lengths for Which Fourth Degree PP Interleavers Lead to Weaker Performances Compared to Quadratic and Cubic PP Interleavers

Entropy ◽  
2020 ◽  
Vol 22 (1) ◽  
pp. 78
Author(s):  
Lucian Trifina ◽  
Daniela Tarniceriu ◽  
Jonghoon Ryu ◽  
Ana-Mirela Rotopanescu

In this paper, we obtain upper bounds on the minimum distance for turbo codes using fourth degree permutation polynomial (4-PP) interleavers of a specific interleaver length and classical turbo codes of nominal 1/3 coding rate, with two recursive systematic convolutional component codes with generator matrix G = [ 1 , 15 / 13 ] . The interleaver lengths are of the form 16 Ψ or 48 Ψ , where Ψ is a product of different prime numbers greater than three. Some coefficient restrictions are applied when for a prime p i ∣ Ψ , condition 3 ∤ ( p i − 1 ) is fulfilled. Two upper bounds are obtained for different classes of 4-PP coefficients. For a 4-PP f 4 x 4 + f 3 x 3 + f 2 x 2 + f 1 x ( mod 16 k L Ψ ) , k L ∈ { 1 , 3 } , the upper bound of 28 is obtained when the coefficient f 3 of the equivalent 4-permutation polynomials (PPs) fulfills f 3 ∈ { 0 , 4 Ψ } or when f 3 ∈ { 2 Ψ , 6 Ψ } and f 2 ∈ { ( 4 k L − 1 ) · Ψ , ( 8 k L − 1 ) · Ψ } , k L ∈ { 1 , 3 } , for any values of the other coefficients. The upper bound of 36 is obtained when the coefficient f 3 of the equivalent 4-PPs fulfills f 3 ∈ { 2 Ψ , 6 Ψ } and f 2 ∈ { ( 2 k L − 1 ) · Ψ , ( 6 k L − 1 ) · Ψ } , k L ∈ { 1 , 3 } , for any values of the other coefficients. Thus, the task of finding out good 4-PP interleavers of the previous mentioned lengths is highly facilitated by this result because of the small range required for coefficients f 4 , f 3 and f 2 . It was also proven, by means of nonlinearity degree, that for the considered inteleaver lengths, cubic PPs and quadratic PPs with optimum minimum distances lead to better error rate performances compared to 4-PPs with optimum minimum distances.

2004 ◽  
Vol 50 (12) ◽  
pp. 2985-2997 ◽  
Author(s):  
A. Perotti ◽  
S. Benedetto

2013 ◽  
Vol 21 (3) ◽  
pp. 241-256 ◽  
Author(s):  
Manuel González Sarabia ◽  
Joel Nava Lara ◽  
Carlos Rentería Marquez ◽  
Eliseo Sarmíento Rosales

AbstractIn this paper we will compute the main parameters of the parameterized codes arising from cycles. In the case of odd cycles the corresponding codes are the evaluation codes associated to the projective torus and the results are well known. In the case of even cycles we will compute the length and the dimension of the corresponding codes and also we will find lower and upper bounds for the minimum distance of this kind of codes. In many cases our upper bound is sharper than the Singleton bound.


2016 ◽  
Vol 55 ◽  
pp. 653-683 ◽  
Author(s):  
Xiaoyuan Zhu ◽  
Changhe Yuan

Most Relevant Explanation (MRE) is an inference task in Bayesian networks that finds the most relevant partial instantiation of target variables as an explanation for given evidence by maximizing the Generalized Bayes Factor (GBF). No exact MRE algorithm has been developed previously except exhaustive search. This paper fills the void by introducing two Breadth-First Branch-and-Bound (BFBnB) algorithms for solving MRE based on novel upper bounds of GBF. One upper bound is created by decomposing the computation of GBF using a target blanket decomposition of evidence variables. The other upper bound improves the first bound in two ways. One is to split the target blankets that are too large by converting auxiliary nodes into pseudo-targets so as to scale to large problems. The other is to perform summations instead of maximizations on some of the target variables in each target blanket. Our empirical evaluations show that the proposed BFBnB algorithms make exact MRE inference tractable in Bayesian networks that could not be solved previously.


1988 ◽  
Vol 103 (3) ◽  
pp. 451-456 ◽  
Author(s):  
Morwen B. Thistlethwaite

In the recent article [2], a kind of connected link diagram called adequate was investigated, and it was shown that the Jones polynomial is never trivial for such a diagram. Here, on the other hand, upper bounds are considered for the breadth of the Jones polynomial of an arbitrary connected diagram, thus extending some of the results of [1,4,5]. Also, in Theorem 2 below, a characterization is given of those connected, prime diagrams for which the breadth of the Jones polynomial is one less than the number of crossings; recall from [1,4,5] that the breadth equals the number of crossings if and only if that diagram is reduced alternating. The article is concluded with a simple proof, using the Jones polynomial, of W. Menasco's theorem [3] that a connected, alternating diagram cannot represent a split link. We shall work with the Kauffman bracket polynomial 〈D〉 ∈ Z[A, A−1 of a link diagram D.


Author(s):  
Lucian Trifina ◽  
Daniela Tarniceriu ◽  
Jonghoon Ryu ◽  
Ana-Mirela Rotopanescu

2020 ◽  
Vol 43 ◽  
pp. 101212
Author(s):  
Lucian Trifina ◽  
Daniela Tarniceriu ◽  
Jonghoon Ryu ◽  
Ana-Mirela Rotopanescu

Sign in / Sign up

Export Citation Format

Share Document