An upper bound for the breadth of the Jones polynomial

1988 ◽  
Vol 103 (3) ◽  
pp. 451-456 ◽  
Author(s):  
Morwen B. Thistlethwaite

In the recent article [2], a kind of connected link diagram called adequate was investigated, and it was shown that the Jones polynomial is never trivial for such a diagram. Here, on the other hand, upper bounds are considered for the breadth of the Jones polynomial of an arbitrary connected diagram, thus extending some of the results of [1,4,5]. Also, in Theorem 2 below, a characterization is given of those connected, prime diagrams for which the breadth of the Jones polynomial is one less than the number of crossings; recall from [1,4,5] that the breadth equals the number of crossings if and only if that diagram is reduced alternating. The article is concluded with a simple proof, using the Jones polynomial, of W. Menasco's theorem [3] that a connected, alternating diagram cannot represent a split link. We shall work with the Kauffman bracket polynomial 〈D〉 ∈ Z[A, A−1 of a link diagram D.

2011 ◽  
Vol 20 (07) ◽  
pp. 1059-1071
Author(s):  
JUAN GONZÁLEZ-MENESES ◽  
PEDRO M. G. MANCHÓN

Let D be a link diagram with n crossings, sA and sB be its extreme states and |sAD| (respectively, |sBD|) be the number of simple closed curves that appear when smoothing D according to sA (respectively, sB). We give a general formula for the sum |sAD| + |sBD| for a k-almost alternating diagram D, for any k, characterizing this sum as the number of faces in an appropriate triangulation of an appropriate surface with boundary. When D is dealternator connected, the triangulation is especially simple, yielding |sAD| + |sBD| = n + 2 - 2k. This gives a simple geometric proof of the upper bound of the span of the Jones polynomial for dealternator connected diagrams, a result first obtained by Zhu [On Kauffman brackets, J. Knot Theory Ramifications6(1) (1997) 125–148.]. Another upper bound of the span of the Jones polynomial for dealternator connected and dealternator reduced diagrams, discovered historically first by Adams et al. [Almost alternating links, Topology Appl.46(2) (1992) 151–165.], is obtained as a corollary. As a new application, we prove that the Turaev genus is equal to the number k of dealternator crossings for any dealternator connected diagram.


2010 ◽  
Vol 19 (08) ◽  
pp. 1001-1023 ◽  
Author(s):  
XIAN'AN JIN ◽  
FUJI ZHANG

It is well known that Jones polynomial (hence, Kauffman bracket polynomial) of links is, in general, hard to compute. By now, Jones polynomials or Kauffman bracket polynomials of many link families have been computed, see [4, 7–11]. In recent years, the computer algebra (Maple) techniques were used to calculate link polynomials for various link families, see [7, 12–14]. In this paper, we try to design a maple program to calculate the explicit expression of the Kauffman bracket polynomial of Montesinos links. We first introduce a family of "ring of tangles" links, which includes Montesinos links as a special subfamily. Then, we provide a closed-form formula of Kauffman bracket polynomial for a "ring of tangles" link in terms of Kauffman bracket polynomials of the numerators and denominators of the tangles building the link. Finally, using this formula and known results on rational links, the Maple program is designed.


2011 ◽  
Vol 20 (03) ◽  
pp. 435-462 ◽  
Author(s):  
LORENZO TRALDI

In earlier work the Kauffman bracket polynomial was extended to an invariant of marked graphs, i.e. looped graphs whose vertices have been partitioned into two classes (marked and not marked). The marked-graph bracket polynomial is readily modified to handle graphs with weighted vertices. We present formulas that simplify the computation of this weighted bracket for graphs that contain twin vertices or are constructed using graph composition, and we show that graph composition corresponds to the construction of a link diagram from tangles.


10.37236/9712 ◽  
2021 ◽  
Vol 28 (3) ◽  
Author(s):  
Gábor Hegedüs ◽  
Lajos Rónyai

In a recent paper, Petrov and Pohoata developed a new algebraic method which combines the Croot-Lev-Pach Lemma from additive combinatorics and Sylvester’s Law of Inertia for real quadratic forms. As an application, they gave a simple proof of the Bannai-Bannai-Stanton bound on the size of $s$-distance sets (subsets $\mathcal{A}\subseteq \mathbb{R}^n$ which determine at most $s$ different distances). In this paper we extend their work and prove upper bounds for the size of $s$-distance sets in various real algebraic sets. This way we obtain a novel and short proof for the bound of Delsarte-Goethals-Seidel on spherical s-distance sets and a generalization of a bound by Bannai-Kawasaki-Nitamizu-Sato on $s$-distance sets on unions of spheres. In our arguments we use the method of Petrov and Pohoata together with some Gröbner basis techniques.


Entropy ◽  
2020 ◽  
Vol 22 (1) ◽  
pp. 78
Author(s):  
Lucian Trifina ◽  
Daniela Tarniceriu ◽  
Jonghoon Ryu ◽  
Ana-Mirela Rotopanescu

In this paper, we obtain upper bounds on the minimum distance for turbo codes using fourth degree permutation polynomial (4-PP) interleavers of a specific interleaver length and classical turbo codes of nominal 1/3 coding rate, with two recursive systematic convolutional component codes with generator matrix G = [ 1 , 15 / 13 ] . The interleaver lengths are of the form 16 Ψ or 48 Ψ , where Ψ is a product of different prime numbers greater than three. Some coefficient restrictions are applied when for a prime p i ∣ Ψ , condition 3 ∤ ( p i − 1 ) is fulfilled. Two upper bounds are obtained for different classes of 4-PP coefficients. For a 4-PP f 4 x 4 + f 3 x 3 + f 2 x 2 + f 1 x ( mod 16 k L Ψ ) , k L ∈ { 1 , 3 } , the upper bound of 28 is obtained when the coefficient f 3 of the equivalent 4-permutation polynomials (PPs) fulfills f 3 ∈ { 0 , 4 Ψ } or when f 3 ∈ { 2 Ψ , 6 Ψ } and f 2 ∈ { ( 4 k L − 1 ) · Ψ , ( 8 k L − 1 ) · Ψ } , k L ∈ { 1 , 3 } , for any values of the other coefficients. The upper bound of 36 is obtained when the coefficient f 3 of the equivalent 4-PPs fulfills f 3 ∈ { 2 Ψ , 6 Ψ } and f 2 ∈ { ( 2 k L − 1 ) · Ψ , ( 6 k L − 1 ) · Ψ } , k L ∈ { 1 , 3 } , for any values of the other coefficients. Thus, the task of finding out good 4-PP interleavers of the previous mentioned lengths is highly facilitated by this result because of the small range required for coefficients f 4 , f 3 and f 2 . It was also proven, by means of nonlinearity degree, that for the considered inteleaver lengths, cubic PPs and quadratic PPs with optimum minimum distances lead to better error rate performances compared to 4-PPs with optimum minimum distances.


2011 ◽  
Vol 20 (08) ◽  
pp. 1093-1128 ◽  
Author(s):  
LORENZO TRALDI

In earlier work we introduced the graph bracket polynomial of graphs with marked vertices, motivated by the fact that the Kauffman bracket of a link diagram D is determined by a looped, marked version of the interlacement graph associated to a directed Euler system of the universe graph of D. Here we extend the graph bracket to graphs whose vertices may carry different kinds of marks, and we show how multiply marked graphs encode interlacement with respect to arbitrary (undirected) Euler systems. The extended machinery brings together the earlier version and the graph-links of Ilyutko and Manturov [J. Knot Theory Ramifications18 (2009) 791–823]. The greater flexibility of the extended bracket also allows for a recursive description much simpler than that of the earlier version.


2016 ◽  
Vol 55 ◽  
pp. 653-683 ◽  
Author(s):  
Xiaoyuan Zhu ◽  
Changhe Yuan

Most Relevant Explanation (MRE) is an inference task in Bayesian networks that finds the most relevant partial instantiation of target variables as an explanation for given evidence by maximizing the Generalized Bayes Factor (GBF). No exact MRE algorithm has been developed previously except exhaustive search. This paper fills the void by introducing two Breadth-First Branch-and-Bound (BFBnB) algorithms for solving MRE based on novel upper bounds of GBF. One upper bound is created by decomposing the computation of GBF using a target blanket decomposition of evidence variables. The other upper bound improves the first bound in two ways. One is to split the target blankets that are too large by converting auxiliary nodes into pseudo-targets so as to scale to large problems. The other is to perform summations instead of maximizations on some of the target variables in each target blanket. Our empirical evaluations show that the proposed BFBnB algorithms make exact MRE inference tractable in Bayesian networks that could not be solved previously.


1998 ◽  
Vol 50 (3) ◽  
pp. 538-546 ◽  
Author(s):  
Richard Froese

AbstractThe purpose of this note is to provide a simple proof of the sharp polynomial upper bound for the resonance counting function of a Schrödinger operator in odd dimensions. At the same time we generalize the result to the class of superexponentially decreasing potentials.


1997 ◽  
Vol 06 (01) ◽  
pp. 125-148 ◽  
Author(s):  
Jun Zhu

An antichain is associated to each link diagram so that the highest degree of the Kauffman bracket can be determined. As an application, we show that the span of the Kauffman bracket is less than or equal to 4(n - m) for dealternator connected m-alternating diagrams and the upper bound is best possible. This completely solves a conjecture of [1]. Finally, we show that a semi-alternating diagram may be not a minimal diagram which disproves a conjecture of K. Murasugi [10].


2020 ◽  
Vol 29 (03) ◽  
pp. 2050010
Author(s):  
Miles Clikeman ◽  
Rachel Morris ◽  
Heather M. Russell

Region crossing change (RCC) is an operation on link diagrams in which all crossings incident to a selected region are changed. Two diagrams are called RCC-equivalent if one can be transformed to the other via a sequence of RCCs. RCC is an unknotting operation but not an unlinking operation. A set of regions of a diagram is called ineffective if RCCs at every region in that set have no net effect on the crossings of the diagram. The main result of this paper is a construction of the complete collection of ineffective sets for any link diagram. This involves a combination of linear algebraic and diagrammatic techniques including a generalization of checkerboard shading called tricoloring. Using this construction of ineffective sets, we provide sharp upper bounds on the maximum number of RCCs needed to transform between RCC-equivalent knot diagrams and reduced 2- and 3-component link diagrams with fixed underlying projections.


Sign in / Sign up

Export Citation Format

Share Document