scholarly journals Impact of Advanced Load-Frequency Control on Optimal Size of Battery Energy Storage in Islanded Microgrid System

Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2213
Author(s):  
Sandro Sitompul ◽  
Goro Fujita

The application of battery energy storage (BES) in microgrid systems has attracted much attention in recent years. It is because the BES is able to store excess power and discharge its power when needed. In islanded microgrid systems, BES is starting to be considered as a unit that can regulate the system frequency. The control used in the BES to display frequency regulation performance is called load-frequency control (LFC). However, this participation resulted in the large size of the battery and high expansion planning cost. In this paper, an advanced LFC control that has frequency limitation compared to traditional LFC is proposed. The proposed control implies droop control as the base and has frequency limitations. Compared to the traditional LFC, the proposed control can reduce the system expansion planning costs. A performance simulation was done to validate battery performance. The results of the numerical simulation showed that the proposed control participated in reducing the operation cost. It directly led to a reduction in the expansion planning cost. A study of battery selection was conducted to draw the practicality of the BES sizing solutions.

Author(s):  
Kalyan Chatterjee

Frequency oscillations due to large load disturbance can be effectively damped by fast acting energy storage devices, because additional energy storage capacity is provided as a supplement to the kinetic energy storage in the moving mass of the generator rotor. The energy storage devices share the sudden changes in power requirement in the load. This paper deals with the concept of Load Frequency Control (LFC) in a deregulated power system considering Battery Energy Storage (BES) system. Time domain simulations are carried out to study the performance of the power system and BES system. The performance of the power system under realistic situation is investigated by including the effects of Generation Rate Constraint (GRC) and governor Dead Band (DB) in the simulation studies.


Sign in / Sign up

Export Citation Format

Share Document