load frequency control
Recently Published Documents





2022 ◽  
Vol 308 ◽  
pp. 118294
Xing-Chen Shangguan ◽  
Yong He ◽  
Chuan-Ke Zhang ◽  
Lin Jiang ◽  
Min Wu

Seyed Hossein Rouhani ◽  
Hamed Mojallali ◽  
Alfred Baghramian

Simultaneous investigation of demand response programs and false data injection cyber-attack are critical issues for the smart power system frequency regulation. To this purpose, in this paper, the output of the studied system is simultaneously divided into two subsystems: one part including false data injection cyder-attack and another part without cyder-attack. Then, false data injection cyber-attack and load disturbance are estimated by a non-linear sliding mode observer, simultaneously and separately. After that, demand response is incorporated in the uncertain power system to compensate the whole or a part of the load disturbance based on the available electrical power in the aggregators considering communication time delay. Finally, active disturbance rejection control is modified and introduced to remove the false data injection cyber-attack and control the uncompensated load disturbance. The salp swarm algorithm is used to design the parameters. The results of several simulation scenarios indicate the efficient performance of the proposed method.

Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 573
Mohamed Mokhtar ◽  
Mostafa I. Marei ◽  
Mariam A. Sameh ◽  
Mahmoud A. Attia

The frequency of power systems is very sensitive to load variations. Additionally, with the increased penetration of renewable energy sources in electrical grids, stabilizing the system frequency becomes more challenging. Therefore, Load Frequency Control (LFC) is used to keep the frequency within its acceptable limits. In this paper, an adaptive controller is proposed to enhance the system performance under load variations. Moreover, the proposed controller overcomes the disturbances resulting from the natural operation of the renewable energy sources such as Wave Energy Conversion System (WECS) and Photovoltaic (PV) system. The superiority of the proposed controller compared to the classical LFC schemes is that it has auto tuned parameters. The validation of the proposed controller is carried out through four case studies. The first case study is dedicated to a two-area LFC system under load variations. The WECS is considered as a disturbance for the second case study. Moreover, to demonstrate the superiority of the proposed controller, the dynamic performance is compared with previous work based on an optimized controller in the third case study. Finally in the fourth case study, a sensitivity analysis is carried out through parameters variations in the nonlinear PV-thermal hybrid system. The novel application of the adaptive controller into the LFC leads to enhance the system performance under disturbance of different sources of renewable energy. Moreover, a robustness test is presented to validate the reliability of the proposed controller.

Energies ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 361
Ahmed Fathy ◽  
Dalia Yousri ◽  
Hegazy Rezk ◽  
Sudhakar Babu Thanikanti ◽  
Hany M. Hasanien

In this article, a recent modified meta-heuristic optimizer named the modified hunger games search optimizer (MHGS) is developed to determine the optimal parameters of a fractional-order proportional integral derivative (FOPID) based load frequency controller (LFC). As an interconnected system’s operation requires maintaining the tie-line power and frequency at their described values without permitting deviations in them, an enhanced optimizer is developed to identify the controllers’ parameters efficiently and rapidly. Therefore, the non-uniform mutation operator is proposed to strengthen the diversity of the solutions and discover the search landscape of the basic hunger games search optimizer (HGS), aiming to provide a reliable approach. The considered fitness function is the integral time absolute error (ITAE) comprising the deviations in tie-line power and frequencies. The analysis is implemented in two networks: the 1st network comprises a photovoltaic (PV) plant connected to the thermal plant, and the 2nd network has four connected plants, which are PV, wind turbine (WT), and 2 thermal units with generation rate constraints and governor dead-band. Two different load disturbances are imposed for two studied systems: static and dynamic. The results of the proposed approach of MHGS are compared with the marine predators algorithm (MPA), artificial ecosystem based optimization (AEO), equilibrium optimizer (EO), and Runge–Kutta based optimizer (RUN), as well as movable damped wave algorithm (DMV) results. Moreover, the performance specifications of the time responses of frequencies and tie-line powers’ violations comprising rise time, settling time, minimum/maximum setting values, overshoot, undershoot, and the peak level besides its duration are calculated. The proposed MHGS shows its reliability in providing the most efficient values for the FOPID controllers’ parameters that achieve the lowest fitness of 0.89726 in a rapid decaying. Moreover, the MHGS based system becomes stable the most quickly as it has the shortest settling time and is well constructed as it has the smallest peak, overshoots at early times, and then the system becomes steady. The results confirmed the competence of the proposed MHGS in designing efficient FOPID-LFC controllers that guarantee reliable operation in case of load disturbances.

Sign in / Sign up

Export Citation Format

Share Document