scholarly journals On the Use of Probability-Based Methods for Estimating the Aerodynamic Boundary-Layer Thickness

Fluids ◽  
2021 ◽  
Vol 6 (8) ◽  
pp. 267
Author(s):  
Andrey V. Boiko ◽  
Kirill V. Demyanko ◽  
Yuri M. Nechepurenko ◽  
Grigory V. Zasko

In this paper, known probabilistic methods for estimating the thickness of the boundary layer of a two-dimensional laminar flow of viscous incompressible fluid are extended to three-dimensional laminar flows of a viscous compressible medium. Their applicability to the problems of boundary-layer stability is studied with the LOTRAN3 software package, which allows us to compute the position of laminar-turbulent transition in three-dimensional aerodynamic configurations.

1994 ◽  
Vol 116 (2) ◽  
pp. 200-211 ◽  
Author(s):  
Ryoji Kobayashi

The laminar-turbulent transition of three-dimensional boundary layers is critically reviewed for some typical axisymmetric bodies rotating in still fluid or in axial flow. The flow structures of the transition regions are visualized. The transition phenomena are driven by the compound of the Tollmien-Schlichting instability, the crossflow instability, and the centrifugal instability. Experimental evidence is provided relating the critical and transition Reynolds numbers, defined in terms of the local velocity and the boundary layer momentum thickness, to the local rotational speed ratio, defined as the ratio of the circumferential speed to the free-stream velocity at the outer edge of the boundary layer, for the rotating disk, the rotating cone, the rotating sphere and other rotating axisymmetric bodies. It is shown that the cross-sectional structure of spiral vortices appearing in the transition regions and the flow pattern of the following secondary instability in the case of the crossflow instability are clearly different than those in the case of the centrifugal instability.


AIAA Journal ◽  
1985 ◽  
Vol 23 (9) ◽  
pp. 1362-1369 ◽  
Author(s):  
M. R. Malik ◽  
D. I. A. Poll

2016 ◽  
Vol 798 ◽  
pp. 751-773 ◽  
Author(s):  
V. I. Lysenko ◽  
S. A. Gaponov ◽  
B. V. Smorodsky ◽  
Yu. G. Yermolaev ◽  
A. D. Kosinov ◽  
...  

A joint theoretical and experimental investigation of the influence of the surface permeability and roughness on the stability and laminar–turbulent transition of a supersonic flat-plate boundary layer at a free-stream Mach number of $M_{\infty }=2$ has been performed. Good quantitative agreement of the experimental data obtained with artificially generated disturbances performed on models with various porous inserts and calculations based on linear stability theory has been achieved. An increase of the pore size and porous-coating thickness leads to a boundary layer destabilization that accelerates the laminar–turbulent transition. It is shown that as a certain (critical) roughness value is reached, with an increase in the thickness of the rough and porous coating, the boundary layer stability diminishes and the laminar–turbulent transition is displaced towards the leading edge of the model.


Sign in / Sign up

Export Citation Format

Share Document