Review: Laminar-to-Turbulent Transition of Three-Dimensional Boundary Layers on Rotating Bodies

1994 ◽  
Vol 116 (2) ◽  
pp. 200-211 ◽  
Author(s):  
Ryoji Kobayashi

The laminar-turbulent transition of three-dimensional boundary layers is critically reviewed for some typical axisymmetric bodies rotating in still fluid or in axial flow. The flow structures of the transition regions are visualized. The transition phenomena are driven by the compound of the Tollmien-Schlichting instability, the crossflow instability, and the centrifugal instability. Experimental evidence is provided relating the critical and transition Reynolds numbers, defined in terms of the local velocity and the boundary layer momentum thickness, to the local rotational speed ratio, defined as the ratio of the circumferential speed to the free-stream velocity at the outer edge of the boundary layer, for the rotating disk, the rotating cone, the rotating sphere and other rotating axisymmetric bodies. It is shown that the cross-sectional structure of spiral vortices appearing in the transition regions and the flow pattern of the following secondary instability in the case of the crossflow instability are clearly different than those in the case of the centrifugal instability.

1974 ◽  
Vol 66 (4) ◽  
pp. 641-655 ◽  
Author(s):  
J. H. Horlock ◽  
A. K. Lewkowicz ◽  
J. Wordsworth

Two attempts were made to develop a three-dimensional laminar boundary layer in the flow over a flat plate in a curved duct, establishing a negligible streamwise pressure gradient and, at the same time, an appreciable crosswise pressure gradient.A first series of measurements was undertaken keeping the free-stream velocity at about 30 ft/s; the boundary layer was expected to be laminar, but appears to have been transitional. As was to be expected, the cross-flow in the boundary layer decreased gradually as the flow became progressively more turbulent.In a second experiment, at a lower free-stream velocity of approximately 10 ft/s, the boundary layer was laminar. Its streamwise profile resembled closely the Blasius form, but the cross-flow near the edge of the boundary layer appears to have exceeded that predicted theoretically. However, there was a substantial experimental scatter in the measurements of the yaw angle, which in laminar boundary layers is difficult to obtain accurately.


1998 ◽  
Vol 120 (3) ◽  
pp. 570-578 ◽  
Author(s):  
D. Ristic ◽  
B. Lakshminarayana

The three-dimensional viscous flow field development in the nozzle passage of an axial flow turbine stage was measured using a “x” hot-wire probe. The measurements were carried out at two axial stations on the endwall and vane surfaces and at several spanwise and pitchwise locations. Static pressure measurements and flow visualization, using a fluorescent oil technique, were also performed to obtain the location of transition and the endwall limiting streamlines. The boundary layers on the vane surface were found to be very thin and mostly laminar, except on the suction surface downstream of 70 percent axial chord. Strong radial pressure gradient, especially close to the suction surface, induces strong radial flow velocities in the trailing edge regions of the blade. On the endwalls, the boundary layers were much thicker, especially near the suction corner of the casing surface, caused by the secondary flow. The secondary flow region near the suction surface-casing corner indicated the presence of the passage vortex detached from the vane surface. The boundary layer code accurately predicts the three-dimensional boundary layers on both vane surfaces and endwall in the regions where the influence of the secondary flow is small.


1969 ◽  
Vol 73 (705) ◽  
pp. 796-798 ◽  
Author(s):  
B. K. Rogers ◽  
M. R. Head

The instrument described here is designed to measure mean flow directions and velocities in the three-dimensional boundary layer. Its particular advantage is the small amount of interference it introduces, while allowing measurements to be made close to the surface and providing an acceptably large traverse distance normal to it. In its present form it is restricted, however, to flat surfaces where space beneath the surface is not at a premium.


In this paper we consider the inviscid instability of three-dimensional boundary-layer flows with a small crossflow over locally concave or convex walls, along with the inviscid instability of stratified shear flows. We show how these two problems are closely related through the forms of their governing equations. A proposed definition of a generalized Richardson number for the neutrally stable inviscid vortex motions is given. Implications of the similarity between the two problems are discussed.


Sign in / Sign up

Export Citation Format

Share Document