scholarly journals Hexokinase Is Required for Sex Pheromone Biosynthesis in Helicoverpa armigera

Insects ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 889
Author(s):  
Yanpeng Chang ◽  
Yunhui Zhang ◽  
Zichen Geng ◽  
Shuangyan Yao ◽  
Wenli Zhao ◽  
...  

Acetyl-CoA, the precursor of sex pheromone biosynthesis in Helicoverpa armigera, is generated from glycolysis. As the first speed-limited enzyme in glycolysis, Hexokinase (HK) plays an important role in acetyl-CoA production. However, the function of HK in sex pheromone production remains unclear. This study employed H. armigera as material to explore the role of HK in sex pheromone production. Results demonstrated that the transcription profile of HaHK in female moth pheromone glands (PGs) was consistent with the release fluctuation of sex pheromone. Interference of HaHK prevented the increase of acetyl-CoA content induced by PBAN. Therefore, knockdown of HaHK in female PGs caused significant decreases in (Z)-11-hexadecenal (Z11-16:Ald) production, female capability to attract males, and mating rate. Furthermore, sugar feeding (5% sugar) increased the transcription and enzymatic activity of HK. Pheromone biosynthesis activating neuropeptide (PBAN) signal phospho-activated HaHK in PGs and Sf9 cells via protein kinase A (PKA), as shown by pharmacological inhibitor analysis. In general, our study confirmed that PBAN/cAMP/PKA signal activated HaHK, in turn promoted glycolysis to ensure the supply of acetyl-CoA, and finally facilitated sex pheromone biosynthesis and subsequent mating behavior.

2021 ◽  
Vol 12 ◽  
Author(s):  
Shuangyan Yao ◽  
Yunhui Zhang ◽  
Yanpeng Chang ◽  
Xiang Li ◽  
Wenli Zhao ◽  
...  

Pyruvate kinase (PYK) is a speed-limited enzyme of glycolysis that catalyzes the formation of pyruvate, and plays an important role in acetyl-CoA synthesis. The acetyl-CoA is the precursor of sex pheromone biosynthesis in Helicoverpa armigera. However, the role of PYK in sex pheromone biosynthesis remains elusive. Here, PYK in H. armigera (HaPYK) was found to be highly expressed in the pheromone glands (PGs). The developmental expression profile of HaPYK was consistent with the fluctuation of sex pheromone release. Function analysis revealed that the knockdown of HaPYK led to a decrease in the levels of pyruvic acid and acetyl-CoA in PGs, which in turn caused a significant decrease in cis-11-hexadecenal (Z11-16: Ald) production, female capability to attract males, and mating frequency. Further study demonstrated that sugar feeding (5% sugar) increased the transcription and enzyme activity of HaPYK, thereby facilitating sex pheromone biosynthesis. Moreover, pheromone biosynthesis activating neuropeptide (PBAN) upregulated HaPYK activity through protein kinase C (PKC), as shown by PKC-specific inhibitor analysis. Altogether, our results revealed that PBAN activated HaPYK by Ca2+/PKC, thereby regulating the synthesis of pyruvate and subsequent acetyl-CoA, ensuring the supply of sex pheromone precursor, and finally facilitating sex pheromone biosynthesis and mating behavior.


Sign in / Sign up

Export Citation Format

Share Document