Signal Transduction
Recently Published Documents





2021 ◽  
Vol 12 ◽  
Dongxing Li ◽  
Yingchao Li ◽  
Jialian Qian ◽  
Xiaojuan Liu ◽  
Huihui Xu ◽  

Chinese cork oak (Quercus variabilis) is a widely distributed and highly valuable deciduous broadleaf tree from both ecological and economic perspectives. Seeds of this species are recalcitrant, i.e., sensitive to desiccation, which affects their storage and long-term preservation of germplasm. However, little is known about the underlying molecular mechanism of desiccation sensitivity of Q. variabilis seeds. In this study, the seeds were desiccated with silica gel for certain days as different treatments from 0 (Control) to 15 days (T15) with a gradient of 1 day. According to the seed germination percentage, four key stages (Control, T2, T4, and T11) were found. Then the transcriptomic profiles of these four stages were compared. A total of 4,405, 4,441, and 5,907 differentially expressed genes (DEGs) were identified in T2 vs. Control, T4 vs. Control, and T11 vs. Control, respectively. Among them, 2,219 DEGs were overlapped in the three comparison groups. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that these DEGs were enriched into 124 pathways, such as “Plant hormone signal transduction” and “Glycerophospholipid metabolism”. DEGs related to hormone biosynthesis and signal transduction (ZEP, YUC, PYR, ABI5, ERF1B, etc.), stress response proteins (LEA D-29, HSP70, etc.), and phospholipase D (PLD1) were detected during desiccation. These genes and their interactions may determine the desiccation sensitivity of seeds. In addition, group specific DEGs were also identified in T2 vs. Control (PP2C62, UNE12, etc.), T4 vs. Control (WRKY1-like, WAK10, etc.), and T11 vs. Control (IBH1, bZIP44, etc.), respectively. Finally, a possible work model was proposed to show the molecular regulation mechanism of desiccation sensitivity in Q. variabilis seeds. This is the first report on the molecular regulation mechanism of desiccation sensitivity of Q. variabilis seeds using RNA-Seq. The findings could make a great contribution to seed storage and long-term conservation of recalcitrant seeds in the future.

Issahy Cano ◽  
Zhengping Hu ◽  
Dina B. AbuSamra ◽  
Magali Saint-Geniez ◽  
Yin Shan Eric Ng ◽  

Galectin-3 (Gal3) is a carbohydrate-binding protein reported to promote angiogenesis by influencing vascular endothelial growth factor-A receptor 2 (VEGFR2) signal transduction. Here we evaluated whether the ability of Gal3 to function as an angiogenic factor involved vascular endothelial growth factor (VEGF). To address this possibility we used human retinal microvascular endothelial cells (HRECs) to determine whether exogenous Gal3 requires VEGF to activate VEGFR2 signaling and if Gal3 is required for VEGF to activate VEGFR2. VEGFR2 phosphorylation and HREC migration assays, following either VEGF neutralization with ranibizumab or Gal3 silencing, revealed that VEGF endogenously produced by the HRECs was essential for the effect of exogenous Gal3 on VEGFR2 activation and cell migration, and that VEGF-induced VEGFR2 activation was not dependent on Gal3 in HRECs. Gal3 depletion led to no reduction in VEGF-induced cell function. Since Gal3 has been suggested to be a potential therapeutic target for VEGFR2-mediated angiogenesis, it is crucial to define the possible Gal3-mediated VEGFR2 signal transduction mechanism to aid the development of efficacious therapeutic strategies.

2021 ◽  
Vol 19 (1) ◽  
Jessica Fiebelkow ◽  
André Guendel ◽  
Beate Guendel ◽  
Nora Mehwald ◽  
Tomasz Jetka ◽  

Abstract Background Cell-to-cell heterogeneity is an inherent feature of multicellular organisms and is central in all physiological and pathophysiological processes including cellular signal transduction. The cytokine IL-6 is an essential mediator of pro- and anti-inflammatory processes. Dysregulated IL-6-induced intracellular JAK/STAT signalling is associated with severe inflammatory and proliferative diseases. Under physiological conditions JAK/STAT signalling is rigorously controlled and timely orchestrated by regulatory mechanisms such as expression of the feedback-inhibitor SOCS3 and activation of the protein-tyrosine phosphatase SHP2 (PTPN11). Interestingly, the function of negative regulators seems not to be restricted to controlling the strength and timely orchestration of IL-6-induced STAT3 activation. Exemplarily, SOCS3 increases robustness of late IL-6-induced STAT3 activation against heterogenous STAT3 expression and reduces the amount of information transferred through JAK/STAT signalling. Methods Here we use multiplexed single-cell analyses and information theoretic approaches to clarify whether also SHP2 contributes to robustness of STAT3 activation and whether SHP2 affects the amount of information transferred through IL-6-induced JAK/STAT signalling. Results SHP2 increases robustness of both basal, cytokine-independent STAT3 activation and early IL-6-induced STAT3 activation against differential STAT3 expression. However, SHP2 does not affect robustness of late IL-6-induced STAT3 activation. In contrast to SOCS3, SHP2 increases the amount of information transferred through IL-6-induced JAK/STAT signalling, probably by reducing cytokine-independent STAT3 activation and thereby increasing sensitivity of the cells. These effects are independent of SHP2-dependent MAPK activation. Conclusion In summary, the results of this study extend our knowledge of the functions of SHP2 in IL-6-induced JAK/STAT signalling. SHP2 is not only a repressor of basal and cytokine-induced STAT3 activity, but also ensures robustness and transmission of information. Plain English summary Cells within a multicellular organism communicate with each other to exchange information about the environment. Communication between cells is facilitated by soluble molecules that transmit information from one cell to the other. Cytokines such as interleukin-6 are important soluble mediators that are secreted when an organism is faced with infections or inflammation. Secreted cytokines bind to receptors within the membrane of their target cells. This binding induces activation of an intracellular cascade of reactions called signal transduction, which leads to cellular responses. An important example of intracellular signal transduction is JAK/STAT signalling. In healthy organisms signalling is controlled and timed by regulatory mechanisms, whose activation results in a controlled shutdown of signalling pathways. Interestingly, not all cells within an organism are identical. They differ in the amount of proteins involved in signal transduction, such as STAT3. These differences shape cellular communication and responses to intracellular signalling. Here, we show that an important negative regulatory protein called SHP2 (or PTPN11) is not only responsible for shutting down signalling, but also for steering signalling in heterogeneous cell populations. SHP2 increases robustness of STAT3 activation against variable STAT3 amounts in individual cells. Additionally, it increases the amount of information transferred through JAK/STAT signalling by increasing the dynamic range of pathway activation in heterogeneous cell populations. This is an amazing new function of negative regulatory proteins that contributes to communication in heterogeneous multicellular organisms in health and disease.

PLoS ONE ◽  
2021 ◽  
Vol 16 (9) ◽  
pp. e0256664
Uchenna Watson Waturuocha ◽  
Athira P. J. ◽  
Krishna Kumar Singh ◽  
Vandana Malhotra ◽  
M. S. Krishna ◽  

The DNA polymorphisms found in clinical strains of Mycobacterium tuberculosis drive altered physiology, virulence, and pathogenesis in them. Although the lineages of these clinical strains can be traced back to common ancestor/s, there exists a plethora of difference between them, compared to those that have evolved in the laboratory. We identify a mutation present in ~80% of clinical strains, which maps in the HATPase domain of the sensor kinase MtrB and alters kinase and phosphatase activities, and affects its physiological role. The changes conferred by the mutation were probed by in-vitro biochemical assays which revealed changes in signaling properties of the sensor kinase. These changes also affect bacterial cell division rates, size and membrane properties. The study highlights the impact of DNA polymorphisms on the pathophysiology of clinical strains and provides insights into underlying mechanisms that drive signal transduction in pathogenic bacteria.

Cells ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 2443
Caleb J. Dalton ◽  
Christopher A. Lemmon

The extracellular matrix (ECM) plays a key role as both structural scaffold and regulator of cell signal transduction in tissues. In times of ECM assembly and turnover, cells upregulate assembly of the ECM protein, fibronectin (FN). FN is assembled by cells into viscoelastic fibrils that can bind upward of 40 distinct growth factors and cytokines. These fibrils play a key role in assembling a provisional ECM during embryonic development and wound healing. Fibril assembly is also often upregulated during disease states, including cancer and fibrotic diseases. FN fibrils have unique mechanical properties, which allow them to alter mechanotransduction signals sensed and relayed by cells. Binding of soluble growth factors to FN fibrils alters signal transduction from these proteins, while binding of other ECM proteins, including collagens, elastins, and proteoglycans, to FN fibrils facilitates the maturation and tissue specificity of the ECM. In this review, we will discuss the assembly of FN fibrils from individual FN molecules; the composition, structure, and mechanics of FN fibrils; the interaction of FN fibrils with other ECM proteins and growth factors; the role of FN in transmitting mechanobiology signaling events; and approaches for studying the mechanics of FN fibrils.

2021 ◽  
Vol 134 (18) ◽  
Lisa te Molder ◽  
Jose M. de Pereda ◽  
Arnoud Sonnenberg

ABSTRACT Hemidesmosomes (HDs) are specialized multiprotein complexes that connect the keratin cytoskeleton of epithelial cells to the extracellular matrix (ECM). In the skin, these complexes provide stable adhesion of basal keratinocytes to the underlying basement membrane. Integrin α6β4 is a receptor for laminins and plays a vital role in mediating cell adhesion by initiating the assembly of HDs. In addition, α6β4 has been implicated in signal transduction events that regulate diverse cellular processes, including proliferation and survival. In this Review, we detail the role of α6β4 in HD assembly and beyond, and we discuss the molecular mechanisms that regulate its function.

Inflammation ◽  
2021 ◽  
Binghui Li ◽  
Shiping Niu ◽  
Hongli Geng ◽  
Changkun Yang ◽  
Changliang Zhao

Noriko Toyama-Sorimachi ◽  
Toshihiko Kobayashi

Abstract Controlling inflammation can alleviate immune-mediated, lifestyle-related and neurodegenerative diseases. The endolysosome system plays critical roles in inflammatory responses. Endolysosomes function as signal transduction hubs to convert various environmental danger signals into gene expression, enabling metabolic adaptation of immune cells and efficient orchestration of inflammation. Solute carrier family 15 member 3 (SLC15A3) and member 4 (SLC15A4) are endolysosome-resident amino acid transporters that are preferentially expressed in immune cells. These transporters play essential roles in signal transduction through endolysosomes, and the loss of either transporter can alleviate multiple inflammatory diseases because of perturbed endolysosome-dependent signaling events, including inflammatory and metabolic signaling. Here, we summarize the findings leading to a proof-of-concept for anti-inflammatory strategies based on targeting SLC15 transporters.

2021 ◽  
Vol 9 (9) ◽  
pp. 1923
Jingyang Ye ◽  
Miaomiao Gao ◽  
Qingxuan Zhou ◽  
Hao Wang ◽  
Nan Xu ◽  

Chemoreceptor (also called methyl-accepting chemotaxis protein, MCP) is the leading signal protein in the chemotaxis signaling pathway. MCP senses and binds chemoeffectors, specifically, and transmits the sensed signal to downstream proteins of the chemotaxis signaling system. The genome of Agrobacterium fabrum (previously, tumefaciens) C58 predicts that a total of 20 genes can encode MCP, but only the MCP-encoding gene atu0514 is located inside the che operon. Hence, the identification of the exact function of atu0514-encoding chemoreceptor (here, named as MCP514) will be very important for us to understand more deeply the chemotaxis signal transduction mechanism of A. fabrum. The deletion of atu0514 significantly decreased the chemotactic migration of A. fabrum in a swim plate. The test of atu0514-deletion mutant (Δ514) chemotaxis toward single chemicals showed that the deficiency of MCP514 significantly weakened the chemotactic response of A. fabrum to four various chemicals, sucrose, valine, citric acid and acetosyringone (AS), but did not completely abolish the chemotactic response. MCP514 was localized at cell poles although it lacks a transmembrane (TM) region and is predicted to be a cytoplasmic chemoreceptor. The replacement of residue Phe328 showed that the helical structure in the hairpin subdomain of MCP514 is a direct determinant for the cellular localization of MCP514. Single respective replacements of key residues indicated that residues Asn336 and Val353 play a key role in maintaining the chemotactic function of MCP514.

2021 ◽  
Vol 22 (18) ◽  
pp. 9739
Ulla Seibel-Ehlert ◽  
Nicole Plank ◽  
Asuka Inoue ◽  
Guenther Bernhardt ◽  
Andrea Strasser

G protein activation represents an early key event in the complex GPCR signal transduction process and is usually studied by label-dependent methods targeting specific molecular events. However, the constrained environment of such “invasive” techniques could interfere with biological processes. Although histamine receptors (HRs) represent (evolving) drug targets, their signal transduction is not fully understood. To address this issue, we established a non-invasive dynamic mass redistribution (DMR) assay for the human H1–4Rs expressed in HEK cells, showing excellent signal-to-background ratios above 100 for histamine (HIS) and higher than 24 for inverse agonists with pEC50 values consistent with literature. Taking advantage of the integrative nature of the DMR assay, the involvement of endogenous Gαq/11, Gαs, Gα12/13 and Gβγ proteins was explored, pursuing a two-pronged approach, namely that of classical pharmacology (G protein modulators) and that of molecular biology (Gα knock-out HEK cells). We showed that signal transduction of hH1–4Rs occurred mainly, but not exclusively, via their canonical Gα proteins. For example, in addition to Gαi/o, the Gαq/11 protein was proven to contribute to the DMR response of hH3,4Rs. Moreover, the Gα12/13 was identified to be involved in the hH2R mediated signaling pathway. These results are considered as a basis for future investigations on the (patho)physiological role and the pharmacological potential of H1–4Rs.

Sign in / Sign up

Export Citation Format

Share Document