regulatory role
Recently Published Documents


TOTAL DOCUMENTS

2205
(FIVE YEARS 412)

H-INDEX

93
(FIVE YEARS 9)

2022 ◽  
Vol 176 ◽  
pp. 114292
Author(s):  
Yongjuan Ren ◽  
Wenhui Zou ◽  
Jingfang Feng ◽  
Chang Zhang ◽  
Weihua Su ◽  
...  

2022 ◽  
Vol 11 ◽  
Author(s):  
Marc Cucurull ◽  
Lucia Notario ◽  
Montse Sanchez-Cespedes ◽  
Cinta Hierro ◽  
Anna Estival ◽  
...  

Approximately 20% of lung adenocarcinomas harbor KRAS mutations, an oncogene that drives tumorigenesis and has the ability to alter the immune system and the tumor immune microenvironment. While KRAS was considered “undruggable” for decades, specific KRAS G12C covalent inhibitors have recently emerged, although their promising results are limited to a subset of patients. Several other drugs targeting KRAS activation and downstream signaling pathways are currently under investigation in early-phase clinical trials. In addition, KRAS mutations can co-exist with other mutations in significant genes in cancer (e.g., STK11 and KEAP1) which induces tumor heterogeneity and promotes different responses to therapies. This review describes the molecular characterization of KRAS mutant lung cancers from a biologic perspective to its clinical implications. We aim to summarize the tumor heterogeneity of KRAS mutant lung cancers and its immune-regulatory role, to report the efficacy achieved with current immunotherapies, and to overview the therapeutic approaches targeting KRAS mutations besides KRAS G12C inhibitors.


Author(s):  
Wen-ying Long ◽  
Guo-hua Zhao ◽  
Yao Wu

Kaposi’s sarcoma-associated herpesvirus (KSHV) has two life cycle modes: the latent and lytic phases. The endoplasmic reticulum (ER) is the site for KSHV production. Furthermore, ER stress can trigger reactivation of KSHV. Little is known about the nature of the ER factors that regulate KSHV replication. Atlastin proteins (ATLs which include ATL1, ATL2, and ATL3) are large dynamin-related GTPases that control the structure and the dynamics of the ER membrane. Here, we show that ATLs can regulate KSHV lytic activation and infection. Overexpression of ATLs enhances KSHV lytic activation, whereas ATLs silence inhibits it. Intriguingly, we find that silencing of ATLs impairs the response of cells to ER stress, and ER stress can promote the lytic activation of KSHV. Our study establishes that ATLs plays a critically regulatory role in KSHV infection, thus expanding the known scope of biological processes controlled by ATLs to include KSHV infection.


2022 ◽  
Vol 12 ◽  
Author(s):  
Xiaomei Tang ◽  
Xiaoyan Hua ◽  
Xujin Peng ◽  
Yongyan Pei ◽  
Zhigang Chen

Lung adenocarcinoma (LUAD) is the main cause of cancer-related deaths worldwide. Long noncoding RNAs have been reported to play an important role in various cancers due to their special functions. Therefore, identifying the lncRNAs involved in LUAD tumorigenesis and development can help improve therapeutic strategies. The TCGA-LUAD RNA expression profile was downloaded from The Cancer Genome Atlas, and a total of 49 differential lncRNAs, 112 differential miRNAs, and 2,953 differential mRNAs were screened. Through Kaplan–Meier curves, interaction networks, hub RNAs (lncRNAs, miRNAs, and mRNAs) were obtained. These hub genes are mainly involved in cell proliferation, cell cycle, lung development, and tumor-related signaling pathways. Two lncRNAs (SMIM25 and PCAT19) more significantly related to the prognosis of LUAD were screened by univariate Cox analysis, multivariate Cox analysis, and risk model analysis. The qPCR results showed that the expression levels of SMIM25 and PCAT19 were downregulated in clinical tissues, A549 and SPC-A1 cells, which were consistent with the bioinformatics analysis results. Subsequently, the PCAT19/miR-143-3p pairs were screened through the weighted gene co-expression network analysis and miRNA-lncRNA regulatory network. Dual luciferase detection confirmed that miR-143-3p directly targets PCAT19, and qPCR results indicated that the expression of the two is positively correlated. Cell function tests showed that overexpression of PCAT19 could significantly inhibit the proliferation, migration, and invasion of A549 and SPC-A1 cells. In contrast, knockout of PCAT19 can better promote the proliferation and migration of A549 and SPC-A1 cells. The expression of PCAT19 was negatively correlated with tumor grade, histological grade, and tumor mutation load in LUAD. In addition, co-transfection experiments confirmed that the miR-143-3p mimic could partially reverse the effect of PCAT19 knockout on the proliferation of A549 and SPC-A1 cells. In summary, PCAT19 is an independent prognostic factor in patients with LUAD that can regulate the proliferation, migration, and invasion of LUAD cells and may be a potential biomarker for the diagnosis of LUAD. PCAT19/miR-143-3p plays a very important regulatory role in the occurrence and development of LUAD.


2022 ◽  
Vol 2022 ◽  
pp. 1-6
Author(s):  
Wulin Wen ◽  
Fengxia Yang ◽  
Xueliang Shen ◽  
Ningyu Feng ◽  
Huiyu Ha ◽  
...  

Objective. We aimed to investigate the expression of serum zinc and cytokines interleukin- (IL-) 13 and IL-33 in patients with allergic rhinitis (AR) and observe the effects of zinc on cytokines and pathway proteins in P815 mast cells stimulated by Artemisia annua allergen (Art.) in the IL-33/suppression of the tumorigenicity 2 (ST2) pathway. We also aimed to explore the possible regulatory role of zinc in AR and provide new ideas to determine the etiology and treatment of AR. Methods. AR patients treated from March to September in 2018 were selected as the research participants, and 50 healthy people in the same period were selected as the control group. Serum samples of all patients were collected, and those of AR patients were tested for the presence of allergens. The expression of IL-13 and IL-33 was detected by performing an enzyme-linked immunosorbent assay, while the serum zinc level was detected by conducting an inductively coupled plasma mass spectrometry. The cell counting kit (CCK-8) was used to detect the proliferation of P815 mast cells, and western blot was used to detect the expression of ST2, p38, and p65 proteins. Results. A total of 92 AR patients were included in the study; of them, 52 had mild AR, while 40 had moderate AR. The primary allergen found in AR patients was Artemisia, and the positivity rate was 53.26%. The serum zinc ion level of AR patients decreased, and the expression of IL-13 and IL-33 increased. After Art. was used to treat P815 mast cells, the expression of IL-33 in the cell supernatant increased in a concentration-dependent manner, the expression of receptor ST2 increased, and the expression of downstream p38 and p65 proteins increased. However, after treatment with ZnSO4, the expression of IL-33 in the cell supernatant decreased, and the expression of ST2, p38, and p65 protein decreased. Conclusion. The serum zinc level of AR patients decreased. In the IL-33/ST2 pathway, ZnSO4 can reduce the hypersensitivity of mast cells induced by Art.


2022 ◽  
Author(s):  
Shumin Li ◽  
Siying Liu ◽  
Rui Ai Chen ◽  
Mei Huang ◽  
To Sing Fung ◽  
...  

Coronavirus infections induce the expression of multiple proinflammatory cytokines and chemokines. We have previously shown that in cells infected with gammacoronavirus infectious bronchitis virus (IBV), interleukin 6 (IL-6) and IL-8 were drastically upregulated, and the MAP kinase p38 and the integrated stress response pathways were implicated in this process. In this study, we report that coronavirus infection activates a negative regulatory loop that restricts the upregulation of a number of proinflammatory genes. As revealed by the initial transcriptomic and subsequent validation analyses, the anti-inflammatory adenine-uridine (AU)-rich element (ARE)-binding protein, Zinc finger protein 36 (ZFP36) and its related family members were upregulated in cells infected with IBV and three other coronaviruses, alphacoronaviruses porcine epidemic diarrhea virus (PEDV) and human coronavirus 229E (HCoV-229E), and betacoronavirus HCoV-OC43, respectively. Characterization of the functional roles of ZFP36 during IBV infection demonstrated that ZFP36 promoted the degradation of transcripts coding for IL-6, IL-8, dual-specificity phosphatase 1 (DUSP1), prostaglandin-endoperoxide synthase 2 (PTGS2) and TNF-α-induced protein 3 (TNFAIP3), through binding to AREs in these transcripts. Consistently, knockdown and inhibition of JNK and p38 kinase activities reduced the expression of ZFP36, as well as the expression of IL-6 and IL-8. On the contrary, overexpression of mitogen-activated protein kinase kinase 3 (MKK3) and MAPKAP kinase-2 (MK2), the upstream and downstream kinases of p38, respectively, increased the expression of ZFP36 and decreased the expression of IL-8. Taken together, this study reveals an important regulatory role of the MKK3-p38-MK2-ZFP36 axis in coronavirus infection-induced proinflammatory response. Importance Excessive and uncontrolled induction and release of proinflammatory cytokines and chemokines, the so-called cytokine release syndrome (CRS), would cause life-threatening complications and multiple organ failure in severe coronavirus infections, including severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS) and COVID-19. This study reveals that coronavirus infection also induces the expression of ZFP36, an anti-inflammatory ARE-binding protein, promoting the degradation of ARE-containing transcripts coding for IL-6 and IL-8 as well as a number of other proteins related to inflammatory response. Furthermore, the p38 MAP kinase, its upstream kinase MKK3 and downstream kinase MK2 were shown to play a regulatory role in upregulation of ZFP36 during coronavirus infection cycles. This MKK3-p38-MK2-ZFP36 axis would constitute a potential therapeutic target for severe coronavirus infections.


Sign in / Sign up

Export Citation Format

Share Document