scholarly journals Mapping the Potential Distribution of Ticks in the Western Kanto Region, Japan: Predictions Based on Land-Use, Climate, and Wildlife

Insects ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1095
Author(s):  
Kandai Doi ◽  
Takuya Kato ◽  
Iori Tabata ◽  
Shin-ichi Hayama

Background: Tick distributions have changed rapidly with changes in human activity, land-use patterns, climate, and wildlife distributions over the last few decades. Methods: To estimate potential distributions of ticks, we conducted a tick survey at 134 locations in western Kanto, Japan. We estimated the potential distributions of six tick species (Amblyomma testudinarium Koch, 1844; Haemaphysalis flava Neumann, 1897; Haemaphysalis kitaokai Hoogstraal, 1969; Haemaphysalis longicornis Neumann, 1901; Haemaphysalis megaspinosa Saito, 1969; and Ixodes ovatus Neumann, 1899) using MaxEnt modeling based on climate patterns, land-use patterns, and the distributions of five common wildlife species: sika deer (Cervus nippon Temminck, 1838), wild boar (Sus scrofa Linnaeus, 1758), raccoon (Procyon lotor Linnaeus, 1758), Japanese raccoon dog (Nyctereutes procyonoides Gray, 1834), and masked palm civet (Paguma larvata C.E.H. Smith, 1827)). Results: We collected 24,546 individuals of four genera and 16 tick species. Our models indicated that forest connectivity contributed to the distributions of six tick species and that raccoon distribution contributed to five tick species. Other than that, sika deer distribution contributed to H. kitaokai, and wild boar distribution, bamboo forest, and warm winter climate contributed specifically to A. testudinarium. Conclusions: Based on these results, the dispersal of some tick species toward residential areas and expanded distributions can be explained by the distribution of raccoons and by forest connectivity.

2008 ◽  
Vol 12 (6) ◽  
pp. 434-434
Author(s):  
Jaisung Choi ◽  
Sangyoup Kim ◽  
Youngsoo Jang ◽  
Myungsoo Kang

2008 ◽  
Vol 12 (5) ◽  
pp. 329-338
Author(s):  
Jaisung Choi ◽  
Sangyoup Kim ◽  
Youngsoo Jang ◽  
Myungsoo Kang

1993 ◽  
Vol 14 (1) ◽  
pp. 25-42 ◽  
Author(s):  
Jordan E. Kerber

Selecting an effective archaeological survey takes careful consideration given the interaction of several variables, such as the survey's goals, nature of the data base, and budget constraints. This article provides justification for a “siteless survey” using evidence from a project on Potowomut Neck in Rhode Island whose objective was not to locate sites but to examine the distribution and density of prehistoric remains to test an hypothesis related to land use patterns. The survey strategy, random walk, was chosen because it possessed the advantages of probabilistic testing, as well as the ease of locating sample units. The results were within the limits of statistical validity and were found unable to reject the hypothesis. “Siteless survey” may be successfully applied in similar contexts where the distribution and density of materials, as opposed to ambiguously defined sites, are sought as evidence of land use patterns, in particular, and human adaptation, in general.


2021 ◽  
Vol 13 (4) ◽  
pp. 631
Author(s):  
Kyle D. Woodward ◽  
Narcisa G. Pricope ◽  
Forrest R. Stevens ◽  
Andrea E. Gaughan ◽  
Nicholas E. Kolarik ◽  
...  

Remote sensing analyses focused on non-timber forest product (NTFP) collection and grazing are current research priorities of land systems science. However, mapping these particular land use patterns in rural heterogeneous landscapes is challenging because their potential signatures on the landscape cannot be positively identified without fine-scale land use data for validation. Using field-mapped resource areas and household survey data from participatory mapping research, we combined various Landsat-derived indices with ancillary data associated with human habitation to model the intensity of grazing and NTFP collection activities at 100-m spatial resolution. The study area is situated centrally within a transboundary southern African landscape that encompasses community-based organization (CBO) areas across three countries. We conducted four iterations of pixel-based random forest models, modifying the variable set to determine which of the covariates are most informative, using the best fit predictions to summarize and compare resource use intensity by resource type and across communities. Pixels within georeferenced, field-mapped resource areas were used as training data. All models had overall accuracies above 60% but those using proxies for human habitation were more robust, with overall accuracies above 90%. The contribution of Landsat data as utilized in our modeling framework was negligible, and further research must be conducted to extract greater value from Landsat or other optical remote sensing platforms to map these land use patterns at moderate resolution. We conclude that similar population proxy covariates should be included in future studies attempting to characterize communal resource use when traditional spectral signatures do not adequately capture resource use intensity alone. This study provides insights into modeling resource use activity when leveraging both remotely sensed data and proxies for human habitation in heterogeneous, spectrally mixed rural land areas.


2013 ◽  
Vol 35 (1) ◽  
pp. 48-70 ◽  
Author(s):  
Andrea Sarzynski ◽  
George Galster ◽  
Lisa Stack

Sign in / Sign up

Export Citation Format

Share Document