spatial aggregation
Recently Published Documents


TOTAL DOCUMENTS

310
(FIVE YEARS 78)

H-INDEX

35
(FIVE YEARS 5)

Author(s):  
Stefan Kranzinger ◽  
Markus Steinmaßl

Aggregation of sparse probe vehicle data (PVD) is a crucial issue in travel time reliability (TTR) analysis. This study, therefore, examines the effect of temporal and spatial aggregation of sparse PVD on the results of a linear regression analysis where two different measures of TTR are analyzed as the dependent variable. Our results show that by aggregating the data to longer time intervals and coarser spatial units the linear model can explain a higher proportion of the variance in TTR. Furthermore, we find that the effects of road design characteristics in particular depend on the variable used to represent TTR. We conclude that the temporal and spatial aggregation of sparse PVD affects the results of linear regression explaining TTR.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jiang Chen ◽  
Zhuochen Lin ◽  
Li-an Li ◽  
Jing Li ◽  
Yuyao Wang ◽  
...  

Abstract Background China launched a new round of healthcare-system reform in 2009 and proposed the goal of equal and guaranteed essential medical and health services for all by 2020. We aimed to investigate the changes in China’s health resources over the past ten years after the healthcare reform. Methods Data were collected from the China Statistical Yearbook and China Health Statistics Yearbook from 2009 to 2018. Four categories and ten indicators of health resources were analyzed. A descriptive analysis was used to present the overall condition. The Health Resource Density Index was applied to showcase health-resource distribution in demographic and geographic dimensions. The global and local Moran’s I were used to assess the spatial autocorrelation of health resources. Concentration Index (CI) was used to quantify the equity of health-resource distribution. A Geo-Detector model and Geographic Weighted Regression (GWR) were applied to assess the association between gross domestic product (GDP) per capita and health resources. Results Health resources have increased over the past ten years. The global and local Moran’s I suggested spatial aggregation in the distribution of health resources. Hospital beds were concentrated in wealthier areas, but this inequity decreased yearly (from CI=0.0587 in 2009 to CI=0.0021 in 2018). Primary medical and health institutions (PMHI) and their beds were concentrated in poorer areas (CI remained negative). Healthcare employees were concentrated in wealthier areas (CI remained positive). In 2017, the q-statistics indicated that the explanatory power of GDP per capita to beds, health personnel, and health expenditure was 40.7%, 50.3%, and 42.5%, respectively. The coefficients of GWR remained positive with statistical significance, indicating the positive association between GDP per capita and health resources. Conclusions From 2009 to 2018, the total amount of health resources in China has increased substantially. Spatial aggregation existed in the health-resources distribution. Health resources tended to be concentrated in wealthier areas. When allocating health resources, the governments should take economic factors into account.


Author(s):  
Keith Burghardt ◽  
Siyi Guo ◽  
Kristina Lerman

The COVID-19 pandemic has posed unprecedented challenges to public health world-wide. To make decisions about mitigation strategies and to understand the disease dynamics, policy makers and epidemiologists must know how the disease is spreading in their communities. Here we analyse confirmed infections and deaths over multiple geographic scales to show that COVID-19’s impact is highly unequal: many regions have nearly zero infections, while others are hot spots. We attribute the effect to a Reed–Hughes-like mechanism in which the disease arrives to regions at different times and grows exponentially at different rates. Faster growing regions correspond to hot spots that dominate spatially aggregated statistics, thereby skewing growth rates at larger spatial scales. Finally, we use these analyses to show that, across multiple spatial scales, the growth rate of COVID-19 has slowed down with each surge. These results demonstrate a trade-off when estimating growth rates: while spatial aggregation lowers noise, it can increase bias. Public policy and epidemic modelling should be aware of, and aim to address, this distortion. This article is part of the theme issue ‘Data science approaches to infectious disease surveillance’.


Animals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3332
Author(s):  
Naxun Zhao ◽  
Ximing Zhang ◽  
Guoyu Shan ◽  
Xinping Ye

Understanding how climate change alters the spatial aggregation of sympatric species is important for biodiversity conservation. Previous studies usually focused on spatial shifting of species but paid little attention to changes in interspecific competitions under climate change. In this study, we evaluated the potential effects of climate change on the spatial aggregation of giant pandas (Ailuropoda melanoleuca) and three sympatric competitive species (i.e., black bears (Ursus thibetanus), golden takins (Budorcas taxicolor), and wild boars (Sus scrofa)) in the Qinling Mountains, China. We employed an ensemble species distribution modeling (SDM) approach to map the current spatial distributions of giant pandas and sympatric animals and projected them to future climate scenarios in 2050s and 2070s. We then examined the range overlapping and niche similarities of these species under different climate change scenarios. The results showed that the distribution areas of giant pandas and sympatric species would decrease remarkably under future climate changes. The shifting directions of the overlapping between giant pandas and sympatric species vary under different climate change scenarios. In conclusion, future climate change greatly shapes the spatial overlapping pattern of giant pandas and sympatric species in the Qinling Mountains, while interspecific competition would be intensified under both mild and worst-case climate change scenarios.


2021 ◽  
Author(s):  
Graham Feingold ◽  
Tom Goren ◽  
Takanobu Yamaguchi

Abstract. The evaluation of radiative forcing associated with aerosol-cloud interactions remains a significant source of uncertainty in future climate projections. The problem is confounded by the fact that aerosol particles influence clouds locally, and that averaging to larger spatial and/or temporal scales carries biases that depend on the heterogeneity and spatial correlation of the interacting fields and the non-linearity of the responses. Mimicking commonly applied satellite data analyses for calculation of albedo susceptibility So, we quantify So aggregation biases using an ensemble of 127 large eddy simulations of marine stratocumulus. We explore the cloud field properties that control this spatial aggregation bias, and quantify the bias for a large range of shallow stratocumulus cloud conditions manifesting a variety of morphologies and range of cloud fractions. We show that So spatial aggregation biases can be on the order of 100s of percent, depending on methodology. Key uncertainties emanate from the typically applied adiabatic drop concentration Nd retrieval, the correlation between aerosol and cloud fields, and the extent to which averaging reduces the variance in cloud albedo Ac and Nd. Biases are more often positive than negative. So biases are highly correlated to biases in the adjustment. Temporal aggregation biases are shown to offset spatial averaging biases. Both spatial and temporal biases have significant implications for observationally based assessments of aerosol indirect effects and our inferences of underlying aerosol-cloud-radiation effects.


2021 ◽  
pp. 1-19
Author(s):  
Wei Liu ◽  
Yuhong Wang

In view of the present situation that most aggregation methods of fuzzy preference information are extended or mixed by classical aggregation operators, which leads to the aggregation accuracy is not high. The purpose of this paper is to develop a novel method for spatial aggregation of fuzzy preference information. Thus we map the fuzzy preference information to a set of three-dimensional coordinate and construct the spatial aggregation model based on Steiner-Weber point. Then, the plant growth simulation algorithm (PGSA) algorithm is used to find the spatial aggregation point. According to the comparison and analysis of the numerical example, the aggregation matrix established by our method is closer to the group preference matrices. Therefore, the optimal aggregation point obtained by using the optimal aggregation method based on spatial Steiner-Weber point can best represent the comprehensive opinion of the decision makers.


2021 ◽  
Author(s):  
Atsushi Yoshimoto ◽  
Patrick Asante

Abstract We propose a new approach to solve inter-temporal unit aggregation issues under maximum opening size requirements using two models. The first model is based on Model I formulation with static harvest treatments for harvest activities. This model identifies periodic harvest activities using a set of constraints for inter-temporal aggregation. The second model is based on Model II formulation, which uses dynamic harvest treatments and incorporates periodic harvest activities directly into the model formulation. The proposed approach contributes to the literature on spatially constrained harvest scheduling problems as it allows a pattern of unit aggregation to change across multiple harvests over time, as inter-temporal aggregation under a maximum opening size requirement over period-specific duration. The main idea of the proposed approach for inter-temporal aggregation is to use a multiple layer scheme for a set of spatial constraints, which is adapted from a maximum flow specification in a spatial forest unit network and a sequential triangle connection to create fully connected feasible clusters. By dividing the planning horizon into period-specific durations for different spatial aggregation patterns, the models can complete inter-temporal spatial aggregation over the planning horizon under a maximum opening size requirement per duration. Study Implications Inter-temporal unit aggregation is important because it provides flexible aggregation patterns for maximum opening size problems with multiple harvests over time. We have proposed a new modeling approach capable of solving spatially constrained harvest scheduling problems by allowing a pattern of unit aggregation to change across multiple harvest periods over time, as inter-temporal aggregation under flexible maximum opening size requirements. Forest managers can benefit from this approach for their future requirements based on the public interests as well as their own.


Sign in / Sign up

Export Citation Format

Share Document