scholarly journals Odd-Graceful Total Colorings for Constructing Graphic Lattice

Mathematics ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 109
Author(s):  
Jing Su ◽  
Hui Sun ◽  
Bing Yao

The security of passwords generated by the graphic lattices is based on the difficulty of the graph isomorphism, graceful tree conjecture, and total coloring conjecture. A graphic lattice is generated by a graphic base and graphical operations, where a graphic base is a group of disjointed, connected graphs holding linearly independent properties. We study the existence of graphic bases with odd-graceful total colorings and show graphic lattices by vertex-overlapping and edge-joining operations; we prove that these graphic lattices are closed to the odd-graceful total coloring.

Algorithms ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 161 ◽  
Author(s):  
R. Vignesh ◽  
J. Geetha ◽  
K. Somasundaram

A total coloring of a graph G is an assignment of colors to the elements of the graph G such that no two adjacent or incident elements receive the same color. The total chromatic number of a graph G, denoted by χ ′ ′ ( G ) , is the minimum number of colors that suffice in a total coloring. Behzad and Vizing conjectured that for any graph G, Δ ( G ) + 1 ≤ χ ′ ′ ( G ) ≤ Δ ( G ) + 2 , where Δ ( G ) is the maximum degree of G. In this paper, we prove the total coloring conjecture for certain classes of graphs of deleted lexicographic product, line graph and double graph.


Author(s):  
J. Geetha ◽  
K. Somasundaram ◽  
Hung-Lin Fu

The total chromatic number [Formula: see text] is the least number of colors needed to color the vertices and edges of a graph [Formula: see text] such that no incident or adjacent elements (vertices or edges) receive the same color. Behzad and Vizing proposed a well-known total coloring conjecture (TCC): [Formula: see text], where [Formula: see text] is the maximum degree of [Formula: see text]. For the powers of cycles, Campos and de Mello proposed the following conjecture: Let [Formula: see text] denote the graphs of powers of cycles of order [Formula: see text] and length [Formula: see text] with [Formula: see text]. Then, [Formula: see text] In this paper, we prove the Campos and de Mello’s conjecture for some classes of powers of cycles. Also, we prove the TCC for complement of powers of cycles.


2013 ◽  
Vol 475-476 ◽  
pp. 379-382
Author(s):  
Mu Chun Li ◽  
Shuang Li Wang ◽  
Li Li Wang

Using the analysis method and the function of constructing the Smarandachely adjacent vertex distinguishing E-total coloring function, the Smarandachely adjacent vertex distinguishing E-total coloring of join graphs are mainly discussed, and the Smarandachely adjacent vertex distinguishing E-total chromatic number of join graph are obtained. The Smarandachely adjacent vertex distinguishing E-total coloring conjecture is further validated.


2021 ◽  
pp. 2142001
Author(s):  
Yingbin Ma ◽  
Wenhan Zhu

Let [Formula: see text] be an edge-colored graph with order [Formula: see text] and [Formula: see text] be a fixed integer satisfying [Formula: see text]. For a vertex set [Formula: see text] of at least two vertices, a tree containing the vertices of [Formula: see text] in [Formula: see text] is called an [Formula: see text]-tree. The [Formula: see text]-tree [Formula: see text] is a total-rainbow [Formula: see text]-tree if the elements of [Formula: see text], except for the vertex set [Formula: see text], have distinct colors. A total-colored graph [Formula: see text] is said to be total-rainbow [Formula: see text]-tree connected if for every set [Formula: see text] of [Formula: see text] vertices in [Formula: see text], there exists a total-rainbow [Formula: see text]-tree in [Formula: see text], while the total-coloring of [Formula: see text] is called a [Formula: see text]-total-rainbow coloring. The [Formula: see text]-total-rainbow index of a nontrivial connected graph [Formula: see text], denoted by [Formula: see text], is the smallest number of colors needed in a [Formula: see text]-total-rainbow coloring of [Formula: see text]. In this paper, we show a sharp upper bound for [Formula: see text], where [Formula: see text] is a 2-connected or 2-edge-connected graph.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Enqiang Zhu ◽  
Yongsheng Rao

A total k-coloring of a graph is an assignment of k colors to its vertices and edges such that no two adjacent or incident elements receive the same color. The total coloring conjecture (TCC) states that every simple graph G has a total ΔG+2-coloring, where ΔG is the maximum degree of G. This conjecture has been confirmed for planar graphs with maximum degree at least 7 or at most 5, i.e., the only open case of TCC is that of maximum degree 6. It is known that every planar graph G of ΔG≥9 or ΔG∈7,8 with some restrictions has a total ΔG+1-coloring. In particular, in (Shen and Wang, 2009), the authors proved that every planar graph with maximum degree 6 and without 4-cycles has a total 7-coloring. In this paper, we improve this result by showing that every diamond-free and house-free planar graph of maximum degree 6 is totally 7-colorable if every 6-vertex is not incident with two adjacent four cycles or three cycles of size p,q,ℓ for some p,q,ℓ∈3,4,4,3,3,4.


2019 ◽  
Vol 11 (01) ◽  
pp. 1950014
Author(s):  
Radhakrishnan Vignesh ◽  
Jayabalan Geetha ◽  
Kanagasabapathi Somasundaram

A total coloring of a graph [Formula: see text] is an assignment of colors to the elements of the graph [Formula: see text] such that no adjacent vertices and edges receive the same color. The total chromatic number of a graph [Formula: see text], denoted by [Formula: see text], is the minimum number of colors that suffice in a total coloring. Behzad and Vizing conjectured that for any simple graph [Formula: see text], [Formula: see text], where [Formula: see text] is the maximum degree of [Formula: see text]. In this paper, we prove the tight bound of the total coloring conjecture for the three types of corona products (vertex, edge and neighborhood) of graphs.


2011 ◽  
Vol 474-476 ◽  
pp. 2341-2345
Author(s):  
Zhi Wen Wang

A total coloring of a simple graph G is called adjacent vertex distinguishing if for any two adjacent and distinct vertices u and v in G, the set of colors assigned to the vertices and the edges incident to u differs from the set of colors assigned to the vertices and the edges incident to v. In this paper we shall prove the series-parallel graph with maximum degree 3 and the series-parallel graph whose the number of edges is the double of maximum degree minus 1 satisfy the adjacent vertex distinguishing total coloring conjecture.


2020 ◽  
Vol 24 (24) ◽  
pp. 18273-18285
Author(s):  
Nilesh Khandekar ◽  
Vinayak Joshi

2020 ◽  
Vol 12 (03) ◽  
pp. 2050032
Author(s):  
S. Mohan ◽  
K. Somasundaram

A total coloring of a graph is an assignment of colors to all the elements of the graph such that no two adjacent or incident elements receive the same color. A graph [Formula: see text] is prismatic, if for every triangle [Formula: see text], every vertex not in [Formula: see text] has exactly one neighbor in [Formula: see text]. In this paper, we prove the total coloring conjecture (TCC) for prismatic graphs and the tight bound of the TCC for some classes of prismatic graphs.


Sign in / Sign up

Export Citation Format

Share Document