scholarly journals Weak and Strong Convergence Theorems for the Inclusion Problem and the Fixed-Point Problem of Nonexpansive Mappings

Mathematics ◽  
2019 ◽  
Vol 7 (2) ◽  
pp. 167 ◽  
Author(s):  
Prasit Cholamjiak ◽  
Suparat Kesornprom ◽  
Nattawut Pholasa

In this work, we study the inclusion problem of the sum of two monotone operators and the fixed-point problem of nonexpansive mappings in Hilbert spaces. We prove the weak and strong convergence theorems under some weakened conditions. Some numerical experiments are also given to support our main theorem.

Mathematics ◽  
2021 ◽  
Vol 9 (19) ◽  
pp. 2491
Author(s):  
Panadda Thongpaen ◽  
Attapol Kaewkhao ◽  
Narawadee Phudolsitthiphat ◽  
Suthep Suantai ◽  
Warunun Inthakon

In this work, we study iterative methods for the approximation of common attractive points of two widely more generalized hybrid mappings in Hilbert spaces and obtain weak and strong convergence theorems without assuming the closedness for the domain. A numerical example supporting our main result is also presented. As a consequence, our main results can be applied to solving a common fixed point problem.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Pattanapong Tianchai

AbstractIn this paper, we introduce a regularization method for solving the variational inclusion problem of the sum of two monotone operators in real Hilbert spaces. We suggest and analyze this method under some mild appropriate conditions imposed on the parameters, which allow us to obtain a short proof of another strong convergence theorem for this problem. We also apply our main result to the fixed point problem of the nonexpansive variational inequality problem, the common fixed point problem of nonexpansive strict pseudocontractions, the convex minimization problem, and the split feasibility problem. Finally, we provide numerical experiments to illustrate the convergence behavior and to show the effectiveness of the sequences constructed by the inertial technique.


Sign in / Sign up

Export Citation Format

Share Document