Approximation Algorithm for the Single Machine Scheduling Problem with Release Dates and Submodular Rejection Penalty
In this paper, we consider the single machine scheduling problem with release dates and nonmonotone submodular rejection penalty. We are given a single machine and multiple jobs with probably different release dates and processing times. For each job, it is either accepted and processed on the machine or rejected. The objective is to minimize the sum of the makespan of the accepted jobs and the rejection penalty of the rejected jobs which is determined by a nonmonotone submodular function. We design a combinatorial algorithm based on the primal-dual framework to deal with the problem, and study its property under two cases. For the general case where the release dates can be different, the proposed algorithm have an approximation ratio of 2. When all the jobs release at the same time, the proposed algorithm becomes a polynomial-time exact algorithm.