scholarly journals Rate of Convergence and Periodicity of the Expected Population Structure of Markov Systems that Live in a General State Space

Mathematics ◽  
2020 ◽  
Vol 8 (6) ◽  
pp. 1021
Author(s):  
P. -C. G. Vassiliou

In this article we study the asymptotic behaviour of the expected population structure of a Markov system that lives in a general state space (MSGS) and its rate of convergence. We continue with the study of the asymptotic periodicity of the expected population structure. We conclude with the study of total variability from the invariant measure in the periodic case for the expected population structure of an MSGS.

1974 ◽  
Vol 11 (4) ◽  
pp. 726-741 ◽  
Author(s):  
Richard. L. Tweedie

The quasi-stationary behaviour of a Markov chain which is φ-irreducible when restricted to a subspace of a general state space is investigated. It is shown that previous work on the case where the subspace is finite or countably infinite can be extended to general chains, and the existence of certain quasi-stationary limits as honest distributions is equivalent to the restricted chain being R-positive with the unique R-invariant measure satisfying a certain finiteness condition.


1974 ◽  
Vol 11 (04) ◽  
pp. 726-741 ◽  
Author(s):  
Richard. L. Tweedie

The quasi-stationary behaviour of a Markov chain which is φ-irreducible when restricted to a subspace of a general state space is investigated. It is shown that previous work on the case where the subspace is finite or countably infinite can be extended to general chains, and the existence of certain quasi-stationary limits as honest distributions is equivalent to the restricted chain being R-positive with the unique R-invariant measure satisfying a certain finiteness condition.


1976 ◽  
Vol 8 (04) ◽  
pp. 737-771 ◽  
Author(s):  
R. L. Tweedie

The aim of this paper is to present a comprehensive set of criteria for classifying as recurrent, transient, null or positive the sets visited by a general state space Markov chain. When the chain is irreducible in some sense, these then provide criteria for classifying the chain itself, provided the sets considered actually reflect the status of the chain as a whole. The first part of the paper is concerned with the connections between various definitions of recurrence, transience, nullity and positivity for sets and for irreducible chains; here we also elaborate the idea of status sets for irreducible chains. In the second part we give our criteria for classifying sets. When the state space is countable, our results for recurrence, transience and positivity reduce to the classical work of Foster (1953); for continuous-valued chains they extend results of Lamperti (1960), (1963); for general spaces the positivity and recurrence criteria strengthen those of Tweedie (1975b).


Sign in / Sign up

Export Citation Format

Share Document