scholarly journals Full-Dimensional Ab Initio Potential Energy Surface and Vibrational Energy Levels of Li2H

Molecules ◽  
2018 ◽  
Vol 24 (1) ◽  
pp. 26
Author(s):  
Michiko Ahn Furudate ◽  
Denis Hagebaum-Reignier ◽  
Gwang-Hi Jeung

We built a full-dimensional analytical potential energy surface of the ground electronic state of Li2H from ca. 20,000 ab initio multi-reference configuration interaction calculations, including core–valence correlation effects. The surface is flexible enough to accurately describe the three dissociation channels: Li (2s 2S) + LiH (1Σ+), Li2 (1Σg+) + H (1s 2S) and 2Li (2s 2S) + H (1s 2S). Using a local fit of this surface, we calculated pure (J = 0) vibrational states of Li2H up to the barrier to linearity (ca. 3400 cm−1 above the global minimum) using a vibrational self-consistent field/virtual state configuration interaction method. We found 18 vibrational states below this barrier, with a maximum of 6 quanta in the bending mode, which indicates that Li2H could be spectroscopically observable. Moreover, we show that some of these vibrational states are highly correlated already ca. 1000 cm−1 below the height of the barrier. We hope these calculations can help the assignment of experimental spectra. In addition, the first low-lying excited states of each B1, B2 and A2 symmetry of Li2H were characterized.

2019 ◽  
Vol 21 (25) ◽  
pp. 13766-13775 ◽  
Author(s):  
Xixi Hu ◽  
Junxiang Zuo ◽  
Changjian Xie ◽  
Richard Dawes ◽  
Hua Guo ◽  
...  

A full-dimensional potential energy surface for HO3, including the HO + O2dissociation asymptote, is developed and rigorous quantum dynamics calculations based on this PES have been carried out to compute the vibrational energy levels of HO3.


2021 ◽  
Author(s):  
Dominika VIGLASKA ◽  
Xiao-Gang Wang ◽  
Tucker CARRINGTON ◽  
David Tew

In this paper we report rovibrational energy levels, transition frequencies, and intensities computed for H2O-HF using a new ab initio potential energy surface and compare with available experimental data. We use the rigid monomer approximation. A G4 symmetry-adapted Lanczos algorithm and an uncoupled product basis are employed. The rovibrational levels are computed up to J = 4. The new analytic 9-D potential is �t to 39771 counterpoise corrected CCSD(T)(F12*)/augcc- pVTZ energies and reduces to the sum of uncoupled H2O and HF potentials in the dissociation limit. On the new potential better agreement with experiment is obtained by re-assigning the R(1) transitions of two vibrational states.


Sign in / Sign up

Export Citation Format

Share Document