Molecules
Latest Publications


TOTAL DOCUMENTS

34581
(FIVE YEARS 24325)

H-INDEX

139
(FIVE YEARS 63)

Published By Mdpi Ag

1420-3049, 1420-3049

Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 556
Author(s):  
Juan M. Ledo ◽  
Henoc Flores ◽  
Fernando Ramos ◽  
Elsa A. Camarillo

Using static bomb combustion calorimetry, the combustion energy of 1-methylhydantoin was obtained, from which the standard molar enthalpy of formation of the crystalline phase at T = 298.15 K of the compound studied was calculated. Through thermogravimetry, mass loss rates were measured as a function of temperature, from which the enthalpy of vaporization was calculated. Additionally, some properties of fusion were determined by differential scanning calorimetry, such as enthalpy and temperature. Adding the enthalpy of fusion to the enthalpy of vaporization, the enthalpy of sublimation of the compound was obtained at T = 298.15 K. By combining the enthalpy of formation of the compound in crystalline phase with its enthalpy of sublimation, the respective standard molar enthalpy of formation in the gas phase was calculated. On the other hand, the results obtained in the present work were compared with those of other derivatives of hydantoin, with which the effect of the change of some substituents in the base heterocyclic ring was evaluated.


Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 561
Author(s):  
Prapenpuksiri Rungsa ◽  
Steve Peigneur ◽  
Nisachon Jangpromma ◽  
Sompong Klaynongsruang ◽  
Jan Tytgat ◽  
...  

Antimicrobial peptides are an important class of therapeutic agent used against a wide range of pathogens such as Gram-negative and Gram-positive bacteria, fungi, and viruses. Mastoparan (MpVT) is an α-helix and amphipathic tetradecapeptide obtained from Vespa tropica venom. This peptide exhibits antibacterial activity. In this work, we investigate the effect of amino acid substitutions and deletion of the first three C-terminal residues on the structure–activity relationship. In this in silico study, the predicted structure of MpVT and its analog have characteristic features of linear cationic peptides rich in hydrophobic and basic amino acids without disulfide bonds. The secondary structure and the biological activity of six designed analogs are studied. The biological activity assays show that the substitution of phenylalanine (MpVT1) results in a higher antibacterial activity than that of MpVT without increasing toxicity. The analogs with the first three deleted C-terminal residues showed decreased antibacterial and hemolytic activity. The CD (circular dichroism) spectra of these peptides show a high content α-helical conformation in the presence of 40% 2,2,2- trifluoroethanol (TFE). In conclusion, the first three C-terminal deletions reduced the length of the α-helix, explaining the decreased biological activity. MpVTs show that the hemolytic activity of mastoparan is correlated to mean hydrophobicity and mean hydrophobic moment. The position and spatial arrangement of specific hydrophobic residues on the non-polar face of α-helical AMPs may be crucial for the interaction of AMPs with cell membranes.


Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 551
Author(s):  
Peter R. Laity ◽  
Chris Holland

The mechanism by which arthropods (e.g., spiders and many insects) can produce silk fibres from an aqueous protein (fibroin) solution has remained elusive, despite much scientific investigation. In this work, we used several techniques to explore the role of a hydration shell bound to the fibroin in native silk feedstock (NSF) from Bombyx mori silkworms. Small angle X-ray and dynamic light scattering (SAXS and DLS) revealed a coil size (radius of gyration or hydrodynamic radius) around 12 nm, providing considerable scope for hydration. Aggregation in dilute aqueous solution was observed above 65 °C, matching the gelation temperature of more concentrated solutions and suggesting that the strength of interaction with the solvent (i.e., water) was the dominant factor. Infrared (IR) spectroscopy indicated decreasing hydration as the temperature was raised, with similar changes in hydration following gelation by freezing or heating. It was found that the solubility of fibroin in water or aqueous salt solutions could be described well by a relatively simple thermodynamic model for the stability of the protein hydration shell, which suggests that the affected water is enthalpically favoured but entropically penalised, due to its reduced (vibrational or translational) dynamics. Moreover, while the majority of this investigation used fibroin from B. mori, comparisons with published work on silk proteins from other silkworms and spiders, globular proteins and peptide model systems suggest that our findings may be of much wider significance.


Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 549
Author(s):  
Mariana Santos-Rivera ◽  
Amelia R. Woolums ◽  
Merrilee Thoresen ◽  
Florencia Meyer ◽  
Carrie K. Vance

Bovine respiratory syncytial virus (BRSV) is a major contributor to respiratory disease in cattle worldwide. Traditionally, BRSV infection is detected based on non-specific clinical signs, followed by reverse transcriptase-polymerase chain reaction (RT-PCR), the results of which can take days to obtain. Near-infrared aquaphotomics evaluation based on biochemical information from biofluids has the potential to support the rapid identification of BRSV infection in the field. This study evaluated NIR spectra (n = 240) of exhaled breath condensate (EBC) from dairy calves (n = 5) undergoing a controlled infection with BRSV. Changes in the organization of the aqueous phase of EBC during the baseline (pre-infection) and infected (post-infection and clinically abnormal) stages were found in the WAMACS (water matrix coordinates) C1, C5, C9, and C11, likely associated with volatile and non-volatile compounds in EBC. The discrimination of these chemical profiles by PCA-LDA models differentiated samples collected during the baseline and infected stages with an accuracy, sensitivity, and specificity >93% in both the calibration and validation. Thus, biochemical changes occurring during BRSV infection can be detected and evaluated with NIR-aquaphotomics in EBC. These findings form the foundation for developing an innovative, non-invasive, and in-field diagnostic tool to identify BRSV infection in cattle.


Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 553
Author(s):  
Arpamas Chariyakornkul ◽  
Waristha Juengwiroj ◽  
Jetsada Ruangsuriya ◽  
Rawiwan Wongpoomchai

The indigenous purplish red fruit, Cleistocalyx nervosum var. paniala (CN), is grown in northern Thailand. The aqueous extract of CN pulp is known to exhibit antioxidant and anticarcinogenic properties. To search for an antioxidant fraction separated from CN, various hydroalcoholic extractions were performed. The acidified ethanolic extract of CN obtained from 0.5% (v/v) citric acid in 80% (v/v) ethanol yielded greater polyphenol content and DPPH radical scavenging activity when compared with other hydroethanolic extracts. Cyanidin-3-glucoside is a major anthocyanin present in the acidified ethanolic extract of CN (AECN). At a dose of 5000 mg/kg bw, an anthocyanin-rich extract was found to be safe when given to rats without any acute toxicity. To examine the hepatoprotective properties of AECN, an overdose of acetaminophen (APAP) was induced in a rat model, while silymarin was used as a standard reference. The administration of AECN at a dose of 300 mg/kg bw for 28 days improved hepatocyte architecture and modulated serum alanine aminotransferase levels in APAP-induced rats. Furthermore, it significantly decreased serum and hepatic malondialdehyde levels but increased hepatic glutathione content, as well as glutathione peroxidase and UDP-glucuronosyltransferase activities. In conclusion, AECN may effectively reduce oxidative stress induced acute hepatotoxicity in overdose APAP-treated rats through the suppression of oxidative stress and the enhancement of the antioxidant system in rat livers.


Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 554
Author(s):  
Faisal Ahmad ◽  
Aqel Albutti ◽  
Muhammad Hamza Tariq ◽  
Ghufranud Din ◽  
Muhammad Tahir ul Qamar ◽  
...  

Hendra virus (HeV) belongs to the paramyxoviridae family of viruses which is associated with the respiratory distress, neurological illness, and potential fatality of the affected individuals. So far, no competitive approved therapeutic substance is available for HeV. For that reason, the current research work was conducted to propose some novel compounds, by adopting a Computer Aided Drug Discovery approach, which could be used to combat HeV. The G attachment Glycoprotein (Ggp) of HeV was selected to achieve the primary objective of this study, as this protein makes the entry of HeV possible in the host cells. Briefly, a library of 6000 antiviral compounds was screened for potential drug-like properties, followed by the molecular docking of short-listed compounds with the Protein Data Bank (PDB) structure of Ggp. Docked complexes of top two hits, having maximum binding affinities with the active sites of Ggp, were further considered for molecular dynamic simulations of 200 ns to elucidate the results of molecular docking analysis. MD simulations and Molecular Mechanics Energies combined with the Generalized Born and Surface Area (MMGBSA) or Poisson–Boltzmann and Surface Area (MMPBSA) revealed that both docked complexes are stable in nature. Furthermore, the same methodology was used between lead compounds and HeV Ggp in complex with its functional receptor in human, Ephrin-B2. Surprisingly, no major differences were found in the results, which demonstrates that our identified compounds can also perform their action even when the Ggp is attached to the Ephrin-B2 ligand. Therefore, in light of all of these results, we strongly suggest that compounds (S)-5-(benzylcarbamoyl)-1-(2-(4-methyl-2-phenylpiperazin-1-yl)-2-oxoethyl)-6-oxo-3,6-dihydropyridin-1-ium-3-ide and 5-(cyclohexylcarbamoyl)-1-(2-((2-(3-fluorophenyl)-2-methylpropyl)amino)-2-oxoethyl)-6-oxo-3,6-dihydropyridin-1-ium-3-ide could be considered as potential therapeutic agents against HeV; however, further in vitro and in vivo experiments are required to validate this study.


Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 552
Author(s):  
Liandra G. Teixeira ◽  
Stephany Rezende ◽  
Ângela Fernandes ◽  
Isabel P. Fernandes ◽  
Lillian Barros ◽  
...  

The use of natural colorants is needed to overcome consumer concerns regarding synthetic food colorants′ safety. However, natural pigments have, in general, poor stability against environmental stresses such as temperature, ionic strength, moisture, light, and pH, among others. In this work, water-in-oil-in-water (W1/O/W2) emulsions were used as protective carriers to improve color stability of a hydrophilic Sambucus nigra L. extract against pH changes. The chemical system comprised water and corn oil as the aqueous and oil phases, respectively, and polyglycerol polyricinoleate (PGPR), Tween 80, and gum Arabic as stabilizers. The primary emulsion was prepared using a W1/O ratio of 40/60 (v/v). For the secondary emulsion, W1/O/W2, different (W1/O)/W2 ratios were tested with the 50/50 (v/v) formulation presenting the best stability, being selected as the coloring system to test in food matrices of different pH: natural yogurt (pH 4.65), rice drink (pH 6.01), cow milk (pH 6.47), and soy drink (pH 7.92). Compared to the direct use of the extract, the double emulsion solution gave rise to higher color stability with pH change and storage time, as corroborated by visual and statistical analysis.


Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 558
Author(s):  
Mario Komar ◽  
Tatjana Gazivoda Kraljević ◽  
Igor Jerković ◽  
Maja Molnar

In this study, deep eutectic solvents (DESs) were used as green and eco-friendly media for the synthesis of substituted 2-mercaptoquinazolin-4(3H)-ones from different anthranilic acids and aliphatic or aromatic isothiocyanates. A model reaction on anthranilic acid and phenyl isothiocyanate was performed in 20 choline chloride-based DESs at 80 °C to find the best solvent. Based on the product yield, choline chloride:urea (1:2) DES was found to be the most effective, while DESs acted both as solvents and catalysts. Desired compounds were prepared with moderate to good yields using stirring, microwave-assisted, and ultrasound-assisted synthesis. Significantly, higher yields were obtained with mixing and ultrasonication (16–76%), while microwave-induced synthesis showed lower effectiveness (13–49%). The specific contribution of this research is the use of DESs in combination with the above-mentioned green techniques for the synthesis of a wide range of derivatives. The structures of the synthesized compounds were confirmed by 1H and 13C NMR spectroscopy.


Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 559
Author(s):  
Karim Samy El-Said ◽  
Shaimaa Hussein ◽  
Barakat M. Alrashdi ◽  
Heba A. Mahmoud ◽  
Mahrous A. Ibrahim ◽  
...  

Heavy metals intoxication causes several health problems that necessitate finding new protective and therapeutic approaches. This study aimed to evaluate the impact of Musa sp. leaves extract (MLE) on hepato-renal toxicities induced by cadmium (Cd) in male mice. The phytochemical screening, metal chelating activity (MCA), and the median lethal dose (LD50) of MLE were determined. Fifty CD-1 male mice were used and intraperitoneally (i.p.) injected with MLE (1000 to 5000 mg/kg b.wt) for MLE LD50 determination. Another 50 mice were used for evaluating the effect of MLE on Cd toxicity. Blood samples were collected for hematological, liver, and kidney functions assessments. Liver tissue homogenates were used for determination of oxidant/antioxidant parameters. Liver and kidney tissues were harvested for histopathological and molecular investigations. MLE showed potent in vitro antioxidant activities. The MCA and LD50 of the MLE were 75 µg/mL and 3000 mg/kg b.wt, respectively. MLE showed beneficial therapeutic activity against hepato-renal toxicities in Cd-intoxicated mice, evidenced by improving the hematological, biochemical, histopathological, and molecular alterations.


Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 550
Author(s):  
Hussah Abdullah Alshwyeh ◽  
Sahar Khamees Aldosary ◽  
Muna Abdulsalam Ilowefah ◽  
Raheem Shahzad ◽  
Adeeb Shehzad ◽  
...  

Nigella species are widely used to cure various ailments. Their health benefits, particularly from the seed oils, could be attributed to the presence of a variety of bioactive components. Roasting is a critical process that has historically been used to facilitate oil extraction and enhance flavor; it may also alter the chemical composition and biological properties of the Nigella seed. The aim of this study was to investigate the effect of the roasting process on the composition of the bioactive components and the biological activities of Nigella arvensis and Nigella sativa seed extracts. Our preliminary study showed that seeds roasted at 50 °C exhibited potent antimicrobial activities; therefore, this temperature was selected for roasting Nigella seeds. For extraction, raw and roasted seed samples were macerated in methanol. The antimicrobial activities against Streptococcus agalactiae, Streptococcus epidermidis, Streptococcus pyogenes, Candida albicans, Escherichia coli, Enterobacter aerogenes, Klebsiella pneumoniae, and Klebsiella oxytoca were determined by measuring the diameter of the zone of inhibition. The cell viability of extracts was tested in a colon carcinoma cell line, HCT-116, by using a microculture tetrazolium technique (MTT) assay. Amino acids were extracted and quantified using an automatic amino acid analyzer. Then, gas chromatography–mass spectrometry (GC–MS) analysis was performed to identify the chemical constituents and fatty acids. As a result, the extracts of raw and roasted seeds in both Nigella species showed strong inhibition against Klebsiella oxytoca, and the raw seed extract of N.arvensis demonstrated moderate inhibition against S. pyogenes. The findings of the MTT assay indicated that all the extracts significantly decreased cancer cell viability. Moreover, N. sativa species possessed higher contents of the measured amino acids, except tyrosine, cystine, and methionine. The GC–MS analysis of extracts showed the presence of 22 and 13 compounds in raw and roasted N. arvensis, respectively, and 9 and 11 compounds in raw and roasted N. sativa, respectively. However, heat treatment decreased the detectable components to 13 compounds in roasted N. arvensis and increased them in roasted N. sativa. These findings indicate that N. arvensis and N. sativa could be potential sources of anticancer and antimicrobials, where the bioactive compounds play a pivotal role as functional components.


Sign in / Sign up

Export Citation Format

Share Document