scholarly journals Density Functional Theory Study of Optical and Electronic Properties of (TiO2)n=5,8,68 Clusters for Application in Solar Cells

Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 955
Author(s):  
Ife Fortunate Elegbeleye ◽  
Nnditshedzeni Eric Maluta ◽  
Rapela Regina Maphanga

A range of solution-processed organic and hybrid organic−inorganic solar cells, such as dye-sensitized and bulk heterojunction organic solar cells have been intensely developed recently. TiO2 is widely employed as electron transporting material in nanostructured TiO2 perovskite-sensitized solar cells and semiconductor in dye-sensitized solar cells. Understanding the optical and electronic mechanisms that govern charge separation, transport and recombination in these devices will enhance their current conversion efficiencies under illumination to sunlight. In this work, density functional theory with Perdew-Burke Ernzerhof (PBE) functional approach was used to explore the optical and electronic properties of three modeled TiO2 brookite clusters, (TiO2)n=5,8,68. The simulated optical absorption spectra for (TiO2)5 and (TiO2)8 clusters show excitation around 200–400 nm, with (TiO2)8 cluster showing higher absorbance than the corresponding (TiO2)5 cluster. The density of states and the projected density of states of the clusters were computed using Grid-base Projector Augmented Wave (GPAW) and PBE exchange correlation functional in a bid to further understand their electronic structure. The density of states spectra reveal surface valence and conduction bands separated by a band gap of 1.10, 2.31, and 1.37 eV for (TiO2)5, (TiO2)8, and (TiO2)68 clusters, respectively. Adsorption of croconate dyes onto the cluster shifted the absorption peaks to higher wavelengths.

2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Ahmad Irfan ◽  
Abdullah G. Al-Sehemi ◽  
Shabbir Muhammad

Geometries, electronic properties, and absorption spectra of the dyes which are a combination of thiophene based dye (THPD) and IR dyes (covering IR region; TIRBD1-TIRBD3) were performed using density functional theory (DFT) and time dependent density functional theory (TD-DFT), respectively. Different electron donating groups, electron withdrawing groups, and IR dyes have been substituted on THPD to enhance the efficiency. The bond lengths of new designed dyes are almost the same. The lowest unoccupied molecular orbital energies of designed dyes are above the conduction band of TiO2 and the highest occupied molecular orbital energies are below the redox couple revealing that TIRBD1-TIRBD3 would be better sensitizers for dye-sensitized solar cells. The broad spectra and low energy gap also showed that designed materials would be efficient sensitizers.


Sign in / Sign up

Export Citation Format

Share Document