scholarly journals Real-Time Moving Object Detection in High-Resolution Video Sensing

Sensors ◽  
2020 ◽  
Vol 20 (12) ◽  
pp. 3591 ◽  
Author(s):  
Haidi Zhu ◽  
Haoran Wei ◽  
Baoqing Li ◽  
Xiaobing Yuan ◽  
Nasser Kehtarnavaz

This paper addresses real-time moving object detection with high accuracy in high-resolution video frames. A previously developed framework for moving object detection is modified to enable real-time processing of high-resolution images. First, a computationally efficient method is employed, which detects moving regions on a resized image while maintaining moving regions on the original image with mapping coordinates. Second, a light backbone deep neural network in place of a more complex one is utilized. Third, the focal loss function is employed to alleviate the imbalance between positive and negative samples. The results of the extensive experimentations conducted indicate that the modified framework developed in this paper achieves a processing rate of 21 frames per second with 86.15% accuracy on the dataset SimitMovingDataset, which contains high-resolution images of the size 1920 × 1080.

Sensors ◽  
2019 ◽  
Vol 19 (14) ◽  
pp. 3217 ◽  
Author(s):  
Jaechan Cho ◽  
Yongchul Jung ◽  
Dong-Sun Kim ◽  
Seongjoo Lee ◽  
Yunho Jung

Most approaches for moving object detection (MOD) based on computer vision are limited to stationary camera environments. In advanced driver assistance systems (ADAS), however, ego-motion is added to image frames owing to the use of a moving camera. This results in mixed motion in the image frames and makes it difficult to classify target objects and background. In this paper, we propose an efficient MOD algorithm that can cope with moving camera environments. In addition, we present a hardware design and implementation results for the real-time processing of the proposed algorithm. The proposed moving object detector was designed using hardware description language (HDL) and its real-time performance was evaluated using an FPGA based test system. Experimental results demonstrate that our design achieves better detection performance than existing MOD systems. The proposed moving object detector was implemented with 13.2K logic slices, 104 DSP48s, and 163 BRAM and can support real-time processing of 30 fps at an operating frequency of 200 MHz.


2013 ◽  
Vol 11 (1) ◽  
pp. 93-109 ◽  
Author(s):  
Praveen Kumar ◽  
Ayush Singhal ◽  
Sanyam Mehta ◽  
Ankush Mittal

Author(s):  
Hazal Lezki ◽  
I. Ahu Ozturk ◽  
M. Akif Akpinar ◽  
M. Kerim Yucel ◽  
K. Berker Logoglu ◽  
...  

Author(s):  
Andreas Laika ◽  
Johny Paul ◽  
Christopher Claus ◽  
Walter Stechele ◽  
Adam El Sayed Auf ◽  
...  

2017 ◽  
Vol 64 (6) ◽  
pp. 4945-4955 ◽  
Author(s):  
Chia-Hung Yeh ◽  
Chih-Yang Lin ◽  
Kahlil Muchtar ◽  
Hsiang-Erh Lai ◽  
Ming-Ting Sun

Sign in / Sign up

Export Citation Format

Share Document