driver assistance systems
Recently Published Documents


TOTAL DOCUMENTS

1069
(FIVE YEARS 380)

H-INDEX

29
(FIVE YEARS 6)

Author(s):  
Jiwook Jang ◽  
Yan Qu ◽  
Hongbiao Zhao ◽  
Angelos Dassios

Abstract Innovations in medicine provide us longer and healthier life, leading lower mortality. Sooner rather than later, much greater longevity would be possible for us due to artificial intelligence advances in health care. Similarly, Advanced Driver Assistance Systems (ADAS) in highly automated vehicles may reduce or even eventually eliminate accidents by perceiving dangerous situations, which would minimize the number of accidents and lead to fewer loss claims for insurance companies. To model the survivor function capturing greater longevity as well as the number of claims reflecting less accidents in the long run, in this paper, we study a Cox process whose intensity process is piecewise-constant and decreasing. We derive its ultimate distributional properties, such as the Laplace transform of intensity integral process, the probability generating function of point process, their associated moments and cumulants, and the probability of no more claims for a given time point. In general, this simple model may be applicable in many other areas for modeling the evolution of gradually disappearing events, such as corporate defaults, dividend payments, trade arrivals, employment of a certain job type (e.g., typists) in the labor market, and release of particles. In particular, we discuss some potential applications to insurance.


Author(s):  
Zejiang Wang ◽  
Xingyu Zhou ◽  
Heran Shen ◽  
Junmin Wang

Abstract Modeling driver steering behavior plays an ever-important role in nowadays automotive dynamics and control applications. Especially, understanding individuals' steering characteristics enables the advanced driver assistance systems (ADAS) to adapt to particular drivers, which provides enhanced protection while mitigating human-machine conflict. Driver-adaptive ADAS requires identifying the parameters inside a driver steering model in real-time to account for driving characteristics variations caused by weather, lighting, road, or driver physiological conditions. Usually, Recursive Least Squares (RLS) and Kalman Filter (KF) are employed to update the driver steering model parameters online. However, because of their asymptotical nature, the convergence speed of the identified parameters could be slow. In contrast, this paper adopts a purely algebraic perspective to identify parameters of a driver steering model, which can achieve parameter identification within a short period. To demonstrate the effectiveness of the proposed method, we first apply synthetic driver steering data from simulation to show its superior performance over an RLS identifier in identifying constant model parameters, including feedback steering gain, feedforward steering gain, preview time, and first-order neuromuscular lag. Then, we utilize real measurement data from human subject driving simulator experiments to illustrate how the time-varying feedback and feedforward steering gains can be updated online via the algebraic method.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
J. Aznar-Poveda ◽  
A.-J. García-Sánchez ◽  
E. Egea-López ◽  
J. García-Haro

AbstractIn vehicular communications, the increase of the channel load caused by excessive periodical messages (beacons) is an important aspect which must be controlled to ensure the appropriate operation of safety applications and driver-assistance systems. To date, the majority of congestion control solutions involve including additional information in the payload of the messages transmitted, which may jeopardize the appropriate operation of these control solutions when channel conditions are unfavorable, provoking packet losses. This study exploits the advantages of non-cooperative, distributed beaconing allocation, in which vehicles operate independently without requiring any costly road infrastructure. In particular, we formulate the beaconing rate control problem as a Markov Decision Process and solve it using approximate reinforcement learning to carry out optimal actions. Results obtained were compared with other traditional solutions, revealing that our approach, called SSFA, is able to keep a certain fraction of the channel capacity available, which guarantees the delivery of emergency-related notifications with faster convergence than other proposals. Moreover, good performance was obtained in terms of packet delivery and collision ratios.


2022 ◽  
Author(s):  
Sehyeon Kim ◽  
Zhaowei Chen ◽  
Hossein Alisafaee

Abstract We report on developing a non-scanning laser-based imaging lidar system based on a diffractive optical element with potential applications in advanced driver assistance systems, autonomous vehicles, drone navigation, and mobile devices. Our proposed lidar utilizes image processing, homography, and deep learning. Our emphasis in the design approach is on the compactness and cost of the final system for it to be deployable both as standalone and complementary to existing lidar sensors, enabling fusion sensing in the applications. This work describes the basic elements of the proposed lidar system and presents two potential ranging mechanisms, along with their experimental results demonstrating the real-time performance of our first prototype.


2022 ◽  
Vol 2 (1) ◽  
pp. 24-40
Author(s):  
Amirhosein Karbasi ◽  
Steve O’Hern

Road traffic crashes are a major safety problem, with one of the leading factors in crashes being human error. Automated and connected vehicles (CAVs) that are equipped with Advanced Driver Assistance Systems (ADAS) are expected to reduce human error. In this paper, the Simulation of Urban MObility (SUMO) traffic simulator is used to investigate how CAVs impact road safety. In order to define the longitudinal behavior of Human Drive Vehicles (HDVs) and CAVs, car-following models, including the Krauss, the Intelligent Driver Model (IDM), and Cooperative Adaptive Cruise Control (CACC) car-following models were used to simulate CAVs. Surrogate safety measures were utilized to analyze CAVs’ safety impact using time-to-collision. Two case studies were evaluated: a signalized grid network that included nine intersections, and a second network consisting of an unsignalized intersection. The results demonstrate that CAVs could potentially reduce the number of conflicts based on each of the car following model simulations and the two case studies. A secondary finding of the research identified additional safety benefits of vehicles equipped with collision avoidance control, through the reduction in rear-end conflicts observed for the CACC car-following model.


2022 ◽  
Vol 8 ◽  
Author(s):  
Shane D. McLean ◽  
Emil Alexander Juul Hansen ◽  
Paul Pop ◽  
Silviu S. Craciunas

Modern Advanced Driver-Assistance Systems (ADAS) combine critical real-time and non-critical best-effort tasks and messages onto an integrated multi-core multi-SoC hardware platform. The real-time safety-critical software tasks have complex interdependencies in the form of end-to-end latency chains featuring, e.g., sensing, processing/sensor fusion, and actuating. The underlying real-time operating systems running on top of the multi-core platform use static cyclic scheduling for the software tasks, while the communication backbone is either realized through PCIe or Time-Sensitive Networking (TSN). In this paper, we address the problem of configuring ADAS platforms for automotive applications, which means deciding the mapping of tasks to processing cores and the scheduling of tasks and messages. Time-critical messages are transmitted in a scheduled manner via the timed-gate mechanism described in IEEE 802.1Qbv according to the pre-computed Gate Control List (GCL) schedule. We study the computation of the assignment of tasks to the available platform CPUs/cores, the static schedule tables for the real-time tasks, as well as the GCLs, such that task and message deadlines, as well as end-to-end task chain latencies, are satisfied. This is an intractable combinatorial optimization problem. As the ADAS platforms and applications become increasingly complex, such problems cannot be optimally solved and require problem-specific heuristics or metaheuristics to determine good quality feasible solutions in a reasonable time. We propose two metaheuristic solutions, a Genetic Algorithm (GA) and one based on Simulated Annealing (SA), both creating static schedule tables for tasks by simulating Earliest Deadline First (EDF) dispatching with different task deadlines and offsets. Furthermore, we use a List Scheduling-based heuristic to create the GCLs in platforms featuring a TSN backbone. We evaluate the proposed solution with real-world and synthetic test cases scaled to fit the future requirements of ADAS systems. The results show that our heuristic strategy can find correct solutions that meet the complex timing and dependency constraints at a higher rate than the related work approaches, i.e., the jitter constraints are satisfied in over 6 times more cases, and the task chain constraints are satisfied in 41% more cases on average. Our method scales well with the growing trend of ADAS platforms.


ATZ worldwide ◽  
2021 ◽  
Vol 124 (1) ◽  
pp. 26-31
Author(s):  
Erich Ramschak ◽  
Philipp Quinz ◽  
Rudolf Freidekind ◽  
Rainer Vögl

2021 ◽  
Vol 8 (2) ◽  
pp. 8-14
Author(s):  
Julkar Nine ◽  
Aarti Kishor Anapunje

Vehicle detection is one of the primal challenges of modern driver-assistance systems owing to the numerous factors, for instance, complicated surroundings, diverse types of vehicles with varied appearance and magnitude, low-resolution videos, fast-moving vehicles. It is utilized for multitudinous applications including traffic surveillance and collision prevention. This paper suggests a Vehicle Detection algorithm developed on Image Processing and Machine Learning. The presented algorithm is predicated on a Support Vector Machine(SVM) Classifier which employs feature vectors extracted via Histogram of Gradients(HOG) approach conducted on a semi-real time basis. A comparison study is presented stating the performance metrics of the algorithm on different datasets.


2021 ◽  
Vol 11 (24) ◽  
pp. 11587
Author(s):  
Luca Ulrich ◽  
Francesca Nonis ◽  
Enrico Vezzetti ◽  
Sandro Moos ◽  
Giandomenico Caruso ◽  
...  

Driver inattention is the primary cause of vehicle accidents; hence, manufacturers have introduced systems to support the driver and improve safety; nonetheless, advanced driver assistance systems (ADAS) must be properly designed not to become a potential source of distraction for the driver due to the provided feedback. In the present study, an experiment involving auditory and haptic ADAS has been conducted involving 11 participants, whose attention has been monitored during their driving experience. An RGB-D camera has been used to acquire the drivers’ face data. Subsequently, these images have been analyzed using a deep learning-based approach, i.e., a convolutional neural network (CNN) specifically trained to perform facial expression recognition (FER). Analyses to assess possible relationships between these results and both ADAS activations and event occurrences, i.e., accidents, have been carried out. A correlation between attention and accidents emerged, whilst facial expressions and ADAS activations resulted to be not correlated, thus no evidence that the designed ADAS are a possible source of distraction has been found. In addition to the experimental results, the proposed approach has proved to be an effective tool to monitor the driver through the usage of non-invasive techniques.


Sign in / Sign up

Export Citation Format

Share Document