scholarly journals New Constraints on Lorentz Invariance Violation from Combined Linear and Circular Optical Polarimetry of Extragalactic Sources

Symmetry ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 880
Author(s):  
Roman Gerasimov ◽  
Praneet Bhoj ◽  
Fabian Kislat

Expanding on our prior efforts to search for Lorentz invariance violation (LIV) using the linear optical polarimetry of extragalactic objects, we propose a new method that combines linear and circular polarization measurements. While existing work has focused on the tendency of LIV to reduce the linear polarization degree, this new method additionally takes into account the coupling between photon helicities induced by some models. This coupling can generate circular polarization as light propagates, even if there is no circular polarization at the source. Combining significant detections of linear polarization of light from extragalactic objects with the absence of the detection of circular polarization in most measurements results in significantly tighter constraints regarding LIV. The analysis was carried out in the framework of the Standard-Model Extension (SME), an effective field theory framework to describe the low-energy effects of an underlying fundamental quantum gravity theory. We evaluate the performance of our method by deriving constraints on the mass dimension d=4 CPT-even SME coefficients from a small set of archival circular and linear optical polarimetry constraints and compare them to similar constraints derived in previous works with far larger sample sizes and based on linear polarimetry only. The new method yielded constraints that are an order of magnitude tighter even for our modest sample size of 21 objects. Based on the demonstrated gain in constraining power from scarce circular data, we advocate for the need for future extragalactic circular polarization surveys.

Symmetry ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 596 ◽  
Author(s):  
Fabian Kislat

Theories of quantum gravity suggest that Lorentz invariance, the fundamental symmetry of the Theory of Relativity, may be broken at the Planck energy scale. While any deviation from conventional Physics must be minuscule in particular at attainable energies, this hypothesis motivates ever more sensitive tests of Lorentz symmetry. In the photon sector, astrophysical observations, in particular polarization measurements, are a very powerful tool because tiny deviations from Lorentz invariance will accumulate as photons propagate over cosmological distances. The Standard-Model Extension (SME) provides a theoretical framework in the form of an effective field theory that describes low-energy effects due to a more fundamental quantum gravity theory by adding additional terms to the Standard Model Lagrangian. These terms can be ordered by the mass dimension d of the corresponding operator and lead to a wavelength, polarization, and direction dependent phase velocity of light. Lorentz invariance violation leads to an energy-dependent change of the Stokes vector as photons propagate, which manifests itself as a rotation of the polarization angle in measurements of linear polarization. In this paper, we analyze optical polarization measurements from 63 Active Galactic Nuclei (AGN) and Gamma-ray Bursts (GRBs) to search for Lorentz violating signals. We use both spectropolarimetric measurements, which directly constrain the change of linear polarization angle, as well as broadband spectrally integrated measurements. In the latter, Lorentz invariance violation manifests itself by reducing the observed net polarization fraction. Any observation of non-vanishing linear polarization thus leads to constraints on the magnitude of Lorentz violating effects. We derive the first set limits on each of the 10 individual birefringent coefficients of the minimal SME with d = 4 , with 95% confidence limits on the order of 10−34 on the dimensionless coefficients.


Galaxies ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 12
Author(s):  
Rui Xu ◽  
Yong Gao ◽  
Lijing Shao

We studied the effects of the Lorentz invariance violation on the rotation of neutron stars (NSs) in the minimal gravitational Standard-Model Extension framework, and calculated the quadrupole radiation generated by them. Aiming at testing Lorentz invariance with observations of continuous gravitational waves (GWs) from rotating NSs in the future, we compared the GW spectra of a rotating ellipsoidal NS under Lorentz-violating gravity with those of a Lorentz-invariant one. The former were found to possess frequency components higher than the second harmonic, which does not happen for the latter, indicating those higher frequency components to be potential signatures of Lorentz violation in continuous GW spectra of rotating NSs.


Sign in / Sign up

Export Citation Format

Share Document