polarization degree
Recently Published Documents


TOTAL DOCUMENTS

197
(FIVE YEARS 65)

H-INDEX

12
(FIVE YEARS 3)

2022 ◽  
Vol 74 (1) ◽  
Author(s):  
Ivan Melchor ◽  
Javier Almendros ◽  
Marcia Hantusch ◽  
Sergey Samsonov ◽  
Dominique Derauw ◽  
...  

AbstractUnderstanding seismic tremor wavefields can shed light on the complex functioning of a volcanic system and, thus, improve volcano monitoring systems. Usually, several seismic stations are required to detect, characterize, and locate volcanic tremors, which can be difficult in remote areas or low-income countries. In these cases, alternative techniques have to be used. Here, we apply a data-reduction approach based on the analysis of three-component seismic data from two co-located stations operating in different times to detect and analyze long-duration tremors. We characterize the spectral content and the polarization of 355 long-duration tremors recorded by a seismic sensor located 9.5 km SE from the active vent of Copahue volcano in the period 2012–2016 and 2018–2019. We classified them as narrow- (NB) and broad-band (BB) tremors according to their spectral content. Several parameters describe the characteristic peaks composing each NB episode: polarization degree, rectilinearity, horizontal azimuth, vertical incidence. Moreover, we propose two coefficients $$C_P$$ C P and $$C_L$$ C L for describing to what extent the wavefield is polarized. For BB episodes, we extend these attributes and express them as a function of frequency. We compare the occurrence of NB and BB episodes with the volcanic activity (including the level of the crater lake, deformation, temperature, and explosive activity) to get insights into their mechanisms. This comparison suggests that the wavefield of NB tremors becomes more linearly polarized during eruptive episodes, but does not provide any specific relationship between the tremor frequency and volcanic activity. On the other hand, BB tremors show a seasonal behavior that would be related to the activity of the shallow hydrothermal system. Graphical Abstract


2022 ◽  
Author(s):  
Hong-Bin Yao ◽  
Li-Zhe Feng ◽  
Jing-Jing Wang ◽  
Tao Ma ◽  
Yi-Chen Yin ◽  
...  

Abstract Hierarchically structured chiral luminescent materials hold promise for achieving efficient circularly polarized luminescence. However, a feasible chemical route to fabricate hierarchically structured chiral luminescent polycrystals is still elusive because of their complex structures and complicated formation process. We here report a biomimetic non-classical crystallization (BNCC) strategy for preparing efficient hierarchically structured chiral luminescent polycrystals using well-designed highly luminescent homochiral copper(I)-iodide hybrid clusters as basic units for biomimetic crystallization. By monitoring the crystallization process, we unravel the BNCC mechanism, which involves crystal nucleation, nanoparticles aggregation, oriented attachment, and mesoscopic transformation processes. We finally obtain the circularly polarized phosphors with both high luminescent efficiency (32%) and high luminescent dissymmetry factor (1.5 × 10-2), achieving the first demonstration of a circularly polarized phosphor converted light emitting diode with a polarization degree of 1.84% at room temperature. Our designed BNCC strategy provides a simple, reliable and large-scale synthetic route for preparing bright circularly polarized phosphors.


Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Ruirui Zhang ◽  
Manna Gu ◽  
Rui Sun ◽  
Xiangyu Zeng ◽  
Yuqin Zhang ◽  
...  

Abstract Artificial nanostructures in metasurfaces induce strong spin–orbit interactions (SOIs), by which incident circularly polarized light can be transformed into two opposite spin components. The component with an opposite helicity to the incident light acquires a geometric phase and is used to realize the versatile functions of the metasurfaces; however, the other component, with an identical helicity, is often neglected as a diffused background. Here, by simultaneously manipulating the two spin components originating from the SOI in plasmonic metasurfaces, independent wavefields in the primary and converted spin channels are achieved; the wavefield in the primary channel is controlled by tailoring the dynamic phase, and that in the converted channel is regulated by designing the Pancharatnam–Berry phase in concurrence with the dynamic phase. The scheme is realized by generating optical lattice fields with different topologies in two spin channels, with the metasurfaces composed of metal nanoslits within six round-apertures mimicking the multi-beam interference. This study demonstrates independent optical fields in a dual-spin channel based on the SOI effect in the metasurface, which provides a higher polarization degree of freedom to modify optical properties at the subwavelength scale.


Atoms ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 108
Author(s):  
Alexei V. Meremianin ◽  
Nikolai L. Manakov

The polarization dependence of the photoionization probability was analyzed in the case when a randomly oriented atom is irradiated by two crossing polarized monochromatic photon beams with the same frequency. It was found that the angular distributions of photoelectrons exhibit the effect of circular dichroism (CD), which consists of the dependence of the photoionization probability on the sign of the circular polarization degree of each beam. We demonstrate that the CD effect exists only for coherent crossing photon beams. It was shown that CD effects are strongly dependent on the phase difference between the electric field vectors of the photon beams and have a quite large magnitude. The possibilities of the experimental observation of CD effects are discussed.


2021 ◽  
Vol 13 (23) ◽  
pp. 4905
Author(s):  
Sijing Shu ◽  
Ji Yang ◽  
Chuanxun Yang ◽  
Hongda Hu ◽  
Wenlong Jing ◽  
...  

The automatic detection and analysis of ocean eddies has become a popular research topic in physical oceanography during the last few decades. Compact polarimetric synthetic aperture radar (CP SAR), an emerging polarimetric SAR system, can simultaneously acquire richer polarization information of the target and achieve large bandwidth observations. It has inherent advantages in ocean observation and is bound to become an ideal data source for ocean eddy observation and research. In this study, we simulated the CP data with L-band ALOS PALSAR fully polarimetric data. We assessed the detection and classification potential of ocean eddies from CP SAR by analyzing 50 CP features for 2 types of ocean eddies (“black”and “white”) based on the Euclidean distance and further carried out eddy detection and eddy information extraction experiments. The results showed that among the 50 CP features, the dihedral component power (Pd), shannon entropy (SEI), double bounce (Dbl), Stokes parameters (g0 and g3), eigenvalue (l1), lambda, RVoG parameter (ms), shannon entropy (SE), surface scattering component (Ps), and σHH all performed better for detecting “white” eddies. Moreover, the H-A combination parameter (1mHA), entropy, shannon entropy (SEP, SEI, and SE), probability (p2), polarization degree (m), anisotropy, probability (p1), double bounce (Dbl), H-A combination parameter (H1mA), circular polarization ratio (CPR), and σVV were better CP features for detecting “black” eddies.


2021 ◽  
Vol 923 (1) ◽  
pp. L5
Author(s):  
Alice Pasetto ◽  
Carlos Carrasco-González ◽  
José L. Gómez ◽  
José-Maria Martí ◽  
Manel Perucho ◽  
...  

Abstract We present unprecedented high-fidelity radio images of the M87 jet. We analyzed Jansky Very Large Array broadband full-polarization radio data from 4 to 18 GHz. The observations were taken with the most extended configuration (A configuration), which allows the study of the emission of the jet up to kiloparsec scales with a linear resolution of ∼10 pc. The high sensitivity and resolution of our data allow us to resolve the jet width. We confirm a double-helix morphology of the jet material between ∼300 pc and ∼1 kpc. We found a gradient of the polarization degree with a minimum at the projected axis and maxima at the jet edges and a gradient in the Faraday depth with opposite signs at the jet edges. We also found that the behavior of the polarization properties along the wide range of frequencies is consistent with internal Faraday depolarization. All of these characteristics strongly support the presence of a helical magnetic field in the M87 jet up to 1 kpc from the central black hole, although the jet is most likely particle-dominated at these large scales. Therefore, we propose a plausible scenario in which the helical configuration of the magnetic field has been maintained to large scales thanks to the presence of Kelvin–Helmholtz instabilities.


2021 ◽  
Vol 923 (1) ◽  
pp. 130
Author(s):  
Le Ngoc Tram ◽  
Thiem Hoang ◽  
Enrique Lopez-Rodriguez ◽  
Simon Coudé ◽  
Archana Soam ◽  
...  

Abstract Located in the Large Magellanic Cloud and mostly irradiated by the massive star cluster R136, 30 Doradus is an ideal target to test the leading theory of grain alignment and rotational disruption by RAdiative Torques (RATs). Here, we use publicly available polarized thermal dust emission observations of 30 Doradus at 89, 154, and 214 μm using SOFIA/HAWC+. We analyze the variation of the dust polarization degree (p) with the total emission intensity (I), the dust temperature (T d), and the gas column density (N H) constructed from Herschel data. The 30 Doradus complex is divided into two main regions relative to R136, namely North and South. In the North, we find that the polarization degree first decreases and then increases before decreasing again when the dust temperature increases toward the irradiating cluster R136. The first depolarization likely arises from the decrease in grain alignment efficiency toward the dense medium due to the attenuation of the interstellar radiation field and the increase in the gas density. The second trend (the increase of p with T d) is consistent with the RAT alignment theory. The final trend (the decrease of p with T d) is consistent with the RAT alignment theory only when the grain rotational disruption by RATs is taken into account. In the South, we find that the polarization degree is nearly independent of the dust temperature, while the grain alignment efficiency is higher around the peak of the gas column density and decreases toward the radiation source. The latter feature is also consistent with the prediction of rotational disruption by RATs.


Photonics ◽  
2021 ◽  
Vol 8 (12) ◽  
pp. 546
Author(s):  
Dezhi Su ◽  
Liang Liu ◽  
Lingshun Liu ◽  
Ruilong Ming ◽  
Shiyong Wu ◽  
...  

The polarization degree of objects in the marine background are affected by infrared radiation from sea surface. Taking into account the radiation coupling effect (RCE), a degree of linear polarization (DoLP) model is deduced. The DoLP of painted aluminum plates at different observation angles are simulated. The simulation results show the trend of the DoLP of the object decreases first and then increases as the observation angle θO, with the minimum value at θO=53∘. Nevertheless, we get a monotonically increasing trend and the minimum value is at θO=0∘ without considering RCE. The experimental results accord closely with those of the simulation with RCE. This conclusion is useful for the polarization detection and identification of infrared objects in the marine background.


2021 ◽  
Vol 922 (2) ◽  
pp. 260
Author(s):  
Hu Xingxing ◽  
Takata Jumpei

Abstract The polarization of X-ray emission is a unique tool used to investigate the magnetic field structure around astrophysical objects. In this paper, we study the linear polarization of X-ray emissions from gamma-ray binary systems based on pulsar scenarios. We discuss synchrotron emission from pulsar wind particles accelerated by a standing shock. We explore three kinds of axisymmetric magnetic field structures: (i) toroidal magnetic fields, (ii) poloidal magnetic fields, and (iii) tangled magnetic fields. Because of the axisymmetric structure, the polarization angle of integrated emission is oriented along or perpendicular to the shock-cone axis projected on the sky and swings around 360° in one orbit. For the toroidal case, the polarization angle is always directed along the shock-cone axis and smoothly changes along the orbital phase. For the poloidal/tangled magnetic field, the direction of the polarization angle depends on the system parameters and orbital phase. In one orbit, the polarization degree for the toroidal case can reach the maximum value of the synchrotron radiation (∼70%), while the maximum polarization degree for poloidal/tangled field cases is several 10%. We apply our model to bright gamma-ray binary LS 5039 and make predictions for future observations. With the expected sensitivity of the Imaging X-ray Polarimetry Explorer, linear polarization can be detected by an observation of several days if the magnetic field is dominated by the toroidal magnetic field. If the magnetic field is dominated by the poloidal/tangled field, significant detection is expected with an observation longer than 10 days.


Author(s):  
Yunlong Wang ◽  
Shihao Ru ◽  
Feiran Wang ◽  
Pei Zhang ◽  
Fu-Li Li

Abstract Quantum gates are essential for the realization of quantum computer and have been implemented in various types of two-level systems. However, high-dimensional quantum gates are rarely investigated both theoretically and experimentally even that high-dimensional quantum systems exhibit remarkable advantages over two-level systems for some quantum information and quantum computing tasks. Here we experimentally demonstrate the four-dimensional X gate and its unique higher orders with the average conversion efficiency 93\%. All these gates are based on orbital-angular-momentum degree of freedom of single photons. Besides, a set of controlled quantum gates is implemented by use of polarization degree of freedom. Our work is an important step towards the goal of achieving arbitrary high-dimensional quantum circuit and paves a way for the implementation of high-dimensional quantum communication and computation.


Sign in / Sign up

Export Citation Format

Share Document