Evaluation of the Connecticut hospital emergency department syndromic surveillance system for monitoring of community gastrointestinal illness

2011 ◽  
Vol 4 (0) ◽  
Author(s):  
Kristen Soto ◽  
Jaime Krasnitski ◽  
Quyen Phan ◽  
Therese Rabatsky-Ehr ◽  
Matthew Cartter
2015 ◽  
Vol 7 (1) ◽  
Author(s):  
Melinda C. Thomas ◽  
David Atrubin ◽  
Janet J. Hamilton

This session discusses an assessment of the effect of patient self-registration methods in hospital emergency departments on data in a syndromic surveillance system and provides suggestions for best practices in identifying and analyzing these data.


2019 ◽  
Vol 14 (1) ◽  
pp. 44-48
Author(s):  
Priscilla W. Wong ◽  
Hilary B. Parton

ABSTRACTObjective:Syndromic surveillance has been useful for routine surveillance on a variety of health outcomes and for informing situational awareness during public health emergencies. Following the landfall of Hurricane Maria in 2017, the New York City (NYC) Department of Health and Mental Hygiene (DOHMH) implemented an enhanced syndromic surveillance system to characterize related emergency department (ED) visits.Methods:ED visits with any mention of specific key words (“Puerto,” “Rico,” “hurricane,” “Maria”) in the ED chief complaint or Puerto Rico patient home Zip Code were identified from the DOHMH syndromic surveillance system in the 8-week window leading up to and following landfall. Visit volume comparisons pre- and post-Hurricane Maria were performed using Fisher’s exact test.Results:Analyses identified an overall increase in NYC ED utilization relating to Puerto Rico following Hurricane Maria landfall. In particular, there was a small but significant increase in visits involving a medication refill or essential medical equipment. Visits for other outcomes, such as mental illness, also increased, but the differences were not statistically significant.Conclusions:Gaining this situational awareness of medical service use was informative following Hurricane Maria, and, following any natural disaster, the same surveillance methods could be easily established to aid an effective emergency response.


2008 ◽  
Vol 8 (1) ◽  
Author(s):  
Tsung-Shu Joseph Wu ◽  
Fuh-Yuan Frank Shih ◽  
Muh-Yong Yen ◽  
Jiunn-Shyan Julian Wu ◽  
Shiou-Wen Lu ◽  
...  

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Etran Bouchouar ◽  
Benjamin M. Hetman ◽  
Brendan Hanley

Abstract Background Automated Emergency Department syndromic surveillance systems (ED-SyS) are useful tools in routine surveillance activities and during mass gathering events to rapidly detect public health threats. To improve the existing surveillance infrastructure in a lower-resourced rural/remote setting and enhance monitoring during an upcoming mass gathering event, an automated low-cost and low-resources ED-SyS was developed and validated in Yukon, Canada. Methods Syndromes of interest were identified in consultation with the local public health authorities. For each syndrome, case definitions were developed using published resources and expert elicitation. Natural language processing algorithms were then written using Stata LP 15.1 (Texas, USA) to detect syndromic cases from three different fields (e.g., triage notes; chief complaint; discharge diagnosis), comprising of free-text and standardized codes. Validation was conducted using data from 19,082 visits between October 1, 2018 to April 30, 2019. The National Ambulatory Care Reporting System (NACRS) records were used as a reference for the inclusion of International Classification of Disease, 10th edition (ICD-10) diagnosis codes. The automatic identification of cases was then manually validated by two raters and results were used to calculate positive predicted values for each syndrome and identify improvements to the detection algorithms. Results A daily secure file transfer of Yukon’s Meditech ED-Tracker system data and an aberration detection plan was set up. A total of six syndromes were originally identified for the syndromic surveillance system (e.g., Gastrointestinal, Influenza-like-Illness, Mumps, Neurological Infections, Rash, Respiratory), with an additional syndrome added to assist in detecting potential cases of COVID-19. The positive predictive value for the automated detection of each syndrome ranged from 48.8–89.5% to 62.5–94.1% after implementing improvements identified during validation. As expected, no records were flagged for COVID-19 from our validation dataset. Conclusions The development and validation of automated ED-SyS in lower-resourced settings can be achieved without sophisticated platforms, intensive resources, time or costs. Validation is an important step for measuring the accuracy of syndromic surveillance, and ensuring it performs adequately in a local context. The use of three different fields and integration of both free-text and structured fields improved case detection.


Sign in / Sign up

Export Citation Format

Share Document