Faculty Opinions recommendation of Ciliary proteins link basal body polarization to planar cell polarity regulation.

Author(s):  
John Wallingford
2007 ◽  
Vol 40 (1) ◽  
pp. 69-77 ◽  
Author(s):  
Chonnettia Jones ◽  
Venus C Roper ◽  
Isabelle Foucher ◽  
Dong Qian ◽  
Boglarka Banizs ◽  
...  

2021 ◽  
Vol 134 (4) ◽  
pp. jcs257006
Author(s):  
Fumiko Matsukawa Usami ◽  
Masaki Arata ◽  
Dongbo Shi ◽  
Sanae Oka ◽  
Yoko Higuchi ◽  
...  

ABSTRACTThe molecular mechanisms by which cilia orientation is coordinated within and between multi-ciliated cells (MCCs) are not fully understood. In the mouse oviduct, MCCs exhibit a characteristic basal body (BB) orientation and microtubule gradient along the tissue axis. The intracellular polarities were moderately maintained in cells lacking CELSR1 (cadherin EGF LAG seven-pass G-type receptor 1), a planar cell polarity (PCP) factor involved in tissue polarity regulation, although the intercellular coordination of the polarities was disrupted. However, CAMSAP3 (calmodulin-regulated spectrin-associated protein 3), a microtubule minus-end regulator, was found to be critical for determining the intracellular BB orientation. CAMSAP3 localized to the base of cilia in a polarized manner, and its mutation led to the disruption of intracellular coordination of BB orientation, as well as the assembly of microtubules interconnecting BBs, without affecting PCP factor localization. Thus, both CELSR1 and CAMSAP3 are responsible for BB orientation but in distinct ways; their cooperation should therefore be critical for generating functional multi-ciliated tissues.


2020 ◽  
Author(s):  
Fumiko Matsukawa Usami ◽  
Masaki Arata ◽  
Dongbo Shi ◽  
Sanae Oka ◽  
Yoko Higuchi ◽  
...  

SummaryThe molecular mechanisms by which cilia orientation is coordinated within and between multiciliated cells (MCCs) is not fully understood. By observing the orientation of basal bodies (BB) in MCCs of mouse oviducts, here, we show that Celsr1, a planar cell polarity (PCP) factor involved in tissue polarity regulation, is dispensable for determining BB orientation in individual cells, whereas CAMSAP3, a microtubule minus-end regulator, is critical for this process but not for PCP. MCCs exhibit a characteristic BB orientation and microtubule gradient along the tissue axis, and these intracellular polarities were maintained in the cells lacking Celsr1, although the intercellular coordination of the polarities was partly disrupted. On the other hand, CAMSAP3 regulated the assembly of microtubules interconnecting BBs by localizing at the BBs, and its mutation led to disruption of intracellular coordination of BB orientation, but not affecting PCP factor localization. Thus, both Celsr1 and CAMSAP3 are responsible for BB orientation but in distinct ways; and therefore, their cooperation should be critical for generating functional multiciliated tissues.


2007 ◽  
Vol 306 (1) ◽  
pp. 121-133 ◽  
Author(s):  
Dong Qian ◽  
Chonnettia Jones ◽  
Agnieszka Rzadzinska ◽  
Sharayne Mark ◽  
Xiaohui Zhang ◽  
...  

2019 ◽  
Author(s):  
Antoine Donati ◽  
Sylvie Schneider-Maunoury ◽  
Christine Vesque

ABSTRACTTo produce a directional flow, ciliated epithelia display a uniform orientation of ciliary beating. Oriented beating requires planar cell polarity (PCP), which leads to planar orientation and asymmetric positioning of the ciliary basal body (BB) along the polarity axis. We took advantage of the polarized mono-ciliated epithelium of the embryonic zebrafish floor plate to investigate by live-imaging the dynamics and mechanisms of BB polarization. We showed that BBs, although bearing a cilium, were highly motile along the antero-posterior axis. BBs contacted both the anterior and the posterior membranes, with a bias towards posterior contacts from early somitogenesis on. Contacts exclusively occurred at junctional Par3 local enrichments or “patches” and were often preceded by transient membrane digitations extending towards the BB, suggesting focused cortical pulling forces. Accordingly, BBs and Par3 patches were linked by dynamic microtubules. We showed that Par3 became posteriorly enriched prior to BB posterior positioning and that floor plate polarization was impaired upon Par3 patches disruption triggered by Par3 or aPKC overexpression. In the PCP mutant Vangl2, where floor plate cells fail to polarize, we observed that BB were still motile but presented behavioral defects, such as ectopic contacts with lateral membranes that correlated with Par3 patch fragmentation and spreading to lateral membranes. Our data lead us to propose an unexpected function for posterior local Par3 enrichment in controlling BB asymmetric positioning downstream of the PCP pathway via a microtubule capture/shrinkage mechanism.


Sign in / Sign up

Export Citation Format

Share Document